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France

João Miguel Ferreira
Universidade dos Açores
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Preface

The way a star-disk system launches and collimates jets is one of the yet unsolved

problems in contemporary astrophysics. This problem is relevant in active galac-

tic nuclei, micro-quasars, gamma-ray bursts, planetary nebulae and young stars.

Although there is agreement in that magnetic fields mediate the process, the exact

details still remain elusive.

The larger angular size of the jet engines in young stars makes them important

laboratories for direct observational model testing. In parallel, the recent advent of

high-energy density facilities has added experimental control to jet studies.

Testing models for jet launching and collimation requires a high degree of

interdisciplinary and sophistication. Indeed, closing the circle between pure MHD,

thermo-chemical evolution, high angular resolution spectro-imaging and laboratory

experiments is not trivial. This volume of Lecture Notes in Physics aims at bridging

these gaps by providing a series of lectures bridging the foundations of the disci-

pline.

The first two lectures by Rob Coker and Andrea Ciardi address studies of jets

physics in the laboratory. Then the lecture by Nektarios Vlahakis introduces the

magnetohydrodynamic theory of stationary jets. The heating mechanisms in these

magnetohydrodynamic jets are largely unknown and the lecture on the coronal

heating in the Sun presented by Alan Hood addresses physical aspects very rele-

vant for jets. Another heating mechanism at work is shocks propagating along the

jet. The lecture by David Flower addresses them with an emphasis on molecular

material and chemistry. An atomic perspective on the microphysics of the shocked

material in the jets is presented by Alex Raga. This book closes with the presen-

tation of series of diagnostics allowing to recover basic physical quantities from

jet emission lines by Catherine Dougados, Francesca Bacciotti, Sylvie Cabrit and

Brunella Nisini.

The editors acknowledge financial support from the JETSET Marie Curie

Research Training Network, the Universidade dos Açores, the Direcção Regional da

Ciência, Tecnologia e Comunicações dos Açores, the Luso-American Foundation,

the British Council and the Fundação para a Ciência e Tecnologia.

The editors would like to thank all the lecturers for their excellent presentations

and contributions to this book. We thank the referees, whose suggestions increased

the clarity and accuracy of the contributions. We are also thankful to all school
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participants. We warmly thank the work by Elsa Silva, Júlio Carreira, Manuel

Monteiro, Eileen Flood, Samira Rajabi and Despoina Panoglou which guaranteed a

smooth and efficient school.

Porto, Portugal Paulo J.V. Garcia

July, 2009 João M. Ferreira
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Laboratory Astrophysics and Scaling

Rob Coker

Abstract This chapter is a summary of lectures intended to introduce the con-

cept of scaling to graduate students. Specifically, we address whether astrophys-

ical phenomena may be addressed using ‘scaled’ versions of the same processes

in experiments in the laboratory. Recent (and ongoing) advances in laser facil-

ity capabilities, such as higher temperatures and Mach numbers, are making such

scaled hydrodynamical and even magneto-hydrodynamical experiments possible.

The general concept of scaling, relevant equations, and some applications are

presented.

1 Introduction

Astrophysical data sets are inherently limited, be it temporally, spatially, or spec-

trographically. We are also limited to observations of 2D projections on the sky.

In order to answer the increasingly complex questions raised by observations of

complex astrophysical objects, we require repeatable and diagnosable experiments.

Although the laboratory has long been used to assist astrophysics (e.g., the syn-

chrotron), the concept of doing experiments that are ‘scaled-model’ versions of

astrophysical objects is fairly new; at least, the ability to do so is new, due to

advances in facilities that conduct high-energy density physics (HEDP) experi-

ments.

In these lectures I will discuss scaling, first using the example of self-similarity.

Then I will develop the concept for generic hydrodynamic (HD) and magneto-

hydrodynamic (MHD) flows. This will lead to the idea of dimensionless parameters.

Next I will briefly present the modern HEDP facilities and some of their diagnostics

which permit scaled laboratory astrophysics. Finally, I will present some ongoing

applications of scaling.

R. Coker (B)

Los Alamos National Laboratory, Los Alamos, NM 87545, USA, robc@lanl.gov

Coker, R.: Laboratory Astrophysics and Scaling. Lect. Notes Phys. 793, 1–29 (2010)

DOI 10.1007/978-3-642-02289-0 1 c© Springer-Verlag Berlin Heidelberg 2010



2 R. Coker

2 The Concept of Scaling

The premise behind scaling is to learn something about an astrophysical object using

a laboratory experiment that represents the important properties of the object. An

example of a ‘scaled experiment’ that I will discuss later is shown in Fig. 1. In this

experiment, the Omega laser facility at the University of Rochester in New York is

used to produce a jet intended to represent the astrophysical object HH110/270, a

young stellar object (YSO) that is interesting because it is the only known instance

of a jet from a young star being clearly deflected by a giant molecular cloud (GMC).

The jets program discussed here is presently part of the National Laser Users’ Facil-

ity (NLUF) program, with P. Hartigan as the PI of the international collaboration.

If things are ‘similar enough,’ then the laboratory experiment will behave in the

‘same way’ as the astrophysical object. The difficulty is defining ‘similar enough’

and determining which aspects of the two systems will behave in the same fashion

and to what degree. Clearly, to capture the behavior of an astrophysical object, the

experiment must be physically scaled down. However, scale does not only refer to

reduced spatial scale (such as in a toy scale model), since astrophysical objects are

generally not static. In fact, the term scaling refers to mapping of any characteristic

of one system to another (e.g., velocity or Mach number) and not to just spatial or

temporal scaling.

Fig. 1 What can be learned about the pc-scale HH110/270 (left, [1]) from an mm-scale Omega

experiment (right, [2])?
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2.1 Self-Similarity

Problems that are ‘self-similar’ are examples of scalable problems. In a self-similar

problem, the solution does not depend explicitly on all variables but rather only on

some combination of them. Here, I will use dimensional analysis to show solution

dependencies; although dimensional analysis fails on some complex types of self-

similar problems (see, e.g., [3]), I will not discuss them here. Three examples of

self-similarity are filling a container with liquid, a piston-induced rarefaction, and

the Sedov blast wave. These problems all scale perfectly such that an experiment on

one ‘scale’ (temporal, spatial, etc.) will give the same results as an experiment (or

astrophysical object) on some entirely different ‘scale.’

2.1.1 Filling a Container

Nearly a hundred years ago, experiments were done that measured the time τ it

took to fill a bowl of volume V with a pipe having a pressure drop P , using various

liquids with density ρ and viscosity μ [4]. A sketch of the experiments is shown in

Fig. 2; the details of the pipe do not matter as long as it permits the flow to be fully

turbulent. Plots of P = f (τ, V, μ, ρ) versus τ show separate curves for the differ-

ent fluids (see the left plot in Fig. 3). Examination of the variables in the problem

shows

[P] =
M

LT 2
, [τ ] = T, [V ] = L3, [μ] =

M

LT
, [ρ] =

M

L3
, (1)

where the square brackets are shorthand for ‘has the units of’ and M , L , and T are

units of mass, length, and time, respectively. It can be seen that two dimensionless

parameters can be created from the five variables:

Π1 =
Pτ

μ
, Π2 =

ρV 2/3

μτ
. (2)

Fig. 2 A sketch of the simple flow experiments from [4], with a fluid from a pipe with a pressure

drop P filling a bowl of volume V in time τ
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Fig. 3 Dimensional (left) and nondimensional (right) experimental results from [4] for water (open

circles), chloroform (closed circles), bromoform (+), and mercury (Δ). Figures taken from [6]

A plot of Π1 versus Π2 results in a single curve for all the data [5], as shown in

the right plot of Fig. 3. Therefore, the physical behavior of the fluid in this regime is

independent of parameters such as composition of the liquid, temperature, or other

considerations. Thus, if one wanted to do an experiment with a fluid that was dan-

gerous or impractical (e.g., benzene), one could replace it with, say, water. This will

result in a ‘scaled’ experiment that illustrates how benzene will behave without ever

having to experiment with it. This illustrates the power of scaling.

2.1.2 A Rarefaction

A more idealized problem is that of a piston-induced rarefaction. The experiment

starts with a uniform ideal gas in a tube with a piston at one end, which is withdrawn

isentropically at some speed V that is less than the speed of sound, c0, in the gas (or,

more strictly, that V ≤ 2c0/(γ −1), to avoid producing a vacuum behind the piston).

The piston motion produces a rarefaction, a moving region of reduced pressure akin

to the stretched portion of a spring. Ignoring the region where the piston accelerates

from 0 to V , the solution for the resulting speed of the gas is [7]

u = 0,
2(c0 − x/t)

γ + 1
, V, (3)

where γ is the adiabatic index of the gas. Figure 4 shows a representation of this

solution, where the three regions of the solution are evident: u = 0 for x < tc0 −
γ+1

2
V t and u = V for x > tc0, where x and t are location and time, respectively.

Notice there are no scales; the solution has the same shape for all time, deviating

from a constant only between x/t = c0 and x/t = c0 − γ+1

2
V . That is, the solution
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Fig. 4 Illustration of the solution for gas motion as a function of position in a piston-induced

rarefaction problem. The front moves with the speed of sound, c0, while the back moves more

slowly and may even be stationary

scales and looks like itself, so if the solution is known for any point in time, it is

known for all time. Again, dimensional analysis also shows this. There are only

four dimensional quantities in the problem, x , t , V , and c0. Since [V ] = [c0] =
L/T = [x]/[t], the solution is not going to explicitly depend on x and t but rather

only on x/t .

2.1.3 Sedov Blast Wave

The Sedov blast wave problem [8] has some energy E delivered instantaneously

to an infinitesimal point in an ideal gas with adiabatic index γ , density ρ0, and

negligible pressure P0 (there is a more general Sedov problem where the medium

has a power-law density profile but I will not discuss that here). Since there is no

explicit spatial or temporal scale or even a velocity scale, it is likely from just the

problem description that the Sedov problem is self-similar.

Since the result of the Sedov problem is a strong spherical shock, the Hugoniot

jump conditions apply and thus

ρ = ρ0

γ + 1

γ − 1
, P =

2

γ + 1
ρ0V 2

sh, u =
2

γ + 1
Vsh, (4)

where ρ, P , and u are the density, pressure, and velocity, respectively, just behind

the shock, and Vsh is the velocity of the shock. Dimensional analysis gives [Rsh]5 =
[t]2[E]/[ρo]. Since [Vsh] = [Rsh]/[t], Vsh = f

(√
E

ρ0 R3
sh

)

and one can then solve for

ρ, P , and u behind the shock in terms of r/Rsh. This sort of dimensional analysis

is only good up to a constant, but here it happens to be ∼ 1. Note that the Mach

number will not be involved since M ≈ Vsh

√
ρ0/Po → ∞ for a Sedov problem.

Consider that Rsh ∼ (E/ρ0)1/5t2/5. Taking the log and rearranging gives
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5

2
log Rsh =

1

2
log

E

ρ0

+ log t. (5)

A plot of log t versus 5/2 log Rsh thus gives a straight line whose intercept can

then be used to find E/ρ0. This has been done, for example, for blasts of TNT to

determine their explosive energy [9].

The solution of the Sedov problem far behind the shock is that P(r )/P → con-

stant, u(r )/u → r/Rsh, and ρ(r )/ρ → a steep function of r/Rsh depending on γ .

These curves are valid for all time and are illustrated in Fig. 5. Within the limits of

the assumptions of the problem (δ-function source, uniform medium, small P0, and

ideal gas), a ‘scaled’ experiment can mimic a problem with some E by adjusting

ρ0 (so that E/ρ0 remains the same) and/or the temporal and spatial scales (so that

(Rsh/t)5/2 remains the same). An obvious possible application of this is to super-

novae.

2.2 More General Scaling

A more common scaling approach is to look for dimensionless quantities that can be

used to describe a specific problem (although note this does not work for the Sedov

problem). Experimental approaches can then be created to represent these scalable

properties.

Fig. 5 Illustration of the solution for the uniform Sedov blastwave problem
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2.2.1 Hydrodynamical Scaling

In the case of a problem described by the hydrodynamic equations, the dimension-

less quantity that likely comes to mind is the Mach number. The polytropic hydro-

dynamic equations describing the evolution of momentum, mass, and energy, are,

respectively [10],

ρ

(
∂v

∂t
+ v · ∇v

)

+ ∇ p = 0, (6)

∂ρ

∂t
+ ∇ · (ρv) = 0, (7)

∂p

∂t
+ γ p∇ · v + v · ∇p = 0, (8)

where ρ is the density, v is the velocity, γ is the adiabatic index, and p is the gas

pressure. There are no energy source or sinks so the flow is adiabatic (ds/dt = 0

where s is the entropy and d/dt is a total derivative), but the flow is also reversible,

thus isentropic (s = constant = cv log(p/ργ ), where cv is the specific heat at con-

stant volume).

The hydrodynamic equations have five dimensional variables: x (through ∇), t ,

ρ, v, and p. Dimensional analysis gives

[v] = [x]/[t], [p] = [ρ][x2]/[t2]. (9)

This means that after scaling x and t by the same amount, or ρ and p by the

same amount, the equations will give the same solution. This can also be seen by

noting that multiplying ρ and p by the same constant in Eqs. (6), (7), and (8) does

not change the result (the same goes for x and t).

Somewhat like the case of a rarefaction, the other variables can all be cast in

terms of f (x/t) rather than f (x, t). Let

x′ = ax (10)

t ′ = bt (11)

ρ ′ = cρ, (12)

so, for example, the density evolution will scale as ρ(x, t) → ρ/c(ax, bt). Also,

from Eq. (9),

v′ = (a/b)v (13)

p′ = (a/b)2cp. (14)

This suggests defining

Eu = v
√

ρ/p, (15)



8 R. Coker

so that

Eu′ = (a/b) ∗ (b/a) ∗
√

c/c = Eu. (16)

Eu, called the Euler number, is, to within a constant involving γ , essentially the

Mach number (and may be referred to as the ‘internal isothermal Mach number’).

If Eu (and γ ) is the same for two systems, they will have identical hydrodynamic

solutions [11] regardless of ρ or p. However, initial and boundary conditions need

to be properly scaled as well. For example, if one flow is confined by a wall and

the other is freely expanding, clearly the solutions will differ. If the wall is ‘far

enough’ away from the region of interest (such that no signal or wave from the

wall has time to reach the region of interest), however, one can still apply scaling.

Similarly, the initial conditions need to be matched to the degree that they affect the

final solution. For example, if the density of the initially confining material for one

system is ρ/100, the equivalent density of the other system may be smaller or larger

than ρ ′/100 and not impact scaling (as long as other complicating factors such as

magnetic fields or heat conduction do not apply); how much smaller or larger is

acceptable is problem dependent. If both systems are fully turbulent, they may have

‘forgotten’ their initial conditions, but the development of turbulence is sensitive to

initial conditions.

In astronomy, the assumptions of the polytropic hydrodynamic equations are

often valid, but in the laboratory they generally are not, since experimental mate-

rials are often not ideal. Therefore, even though the polytropic equations show the

possibility of perfect scaling, in practice an experiment must choose a region of

importance (e.g., the Mach disk at the head of a jet) to scale. The experiment then

may fix some variables (e.g., Eu, spatial scale, and ρ) and the other variables (e.g.,

p, t , and v) will be properly scaled.

If a system has shocks, it is not likely to be isentropic. Using curly brackets to

denote differences across a shock, the jump conditions in 1D are

{ρv⊥⊥} = 0, (17)
{

p + ρv2
⊥⊥
}

= 0, (18)
{

v⊥⊥

(
γ p

γ − 1
+

ρv2

2

)}

= 0, (19)

where v⊥⊥ is the component of the velocity perpendicular to the shock. One can still

factor out a constant (e.g., a/b ∗ (a/b)2c for vp using the notation described above),

so the hydrodynamic equations will still scale in the presence of a shock (ignoring

for now dissipative mechanisms such as radiative cooling). Thus, scaling can be used

in such diverse hydrodynamic applications as wind tunnels (a tunnel experiment

with a full-sized airplane is expensive) and rocket turbomachinery (experiments

pumping water are a lot easier than ones using liquid oxygen).
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2.2.2 Ideal MHD or Euler–Alfvén Scaling

When adding idealized (i.e., nondissipative) magnetic fields to the polytropic hydro-

dynamic equations, the mass (Eq. (7)) and energy (Eq. (8)) equations do not change.

However, the momentum equation has a magnetic force term and so becomes (in

CGS units)

ρ

(
∂v

∂t
+ v · ∇v

)

+ ∇ p +
B × ∇ × B

4π
= 0, (20)

where B is the magnetic field. Similarly, the Faraday equation determines the evo-

lution of the magnetic field:

∂B

∂t
− ∇ × (v × B) = 0. (21)

Since these are the equations for ideal MHD, there is no dissipation and infinite

conductivity.

Since [B] = [p1/2] = [ρ1/2][x]/[t], B does not add anything new dimensionally,

so the equations are still scalable [12]. However, for two systems to scale to each

other, another dimensionless parameter, in addition to the Euler number, needs to be

equal:

Al =
B

v
√

ρ
. (22)

Instead of this choice, the Alfvén number, one could use the β parameter, the ratio

of thermal pressure to magnetic pressure, = 8πp/B2; with equal Euler numbers, the

two are equivalent to within a constant. Thus, an ideal polytropic MHD problem can

be perfectly scaled by matching Eu and β (and properly scaling boundary and initial

conditions).

2.2.3 MHD Scaling with Viscosity and Ohmic Dissipation

If one includes a constant viscosity η and a constant conductivity σ in the poly-

tropic MHD equations, again the energy and mass equations are not effected. The

momentum equation becomes

ρ

(
∂v

∂t
+ v · ∇v

)

+ ∇ p +
B × ∇ × B

4π
− η∇2v = 0, (23)

and Faraday’s law becomes

∂B

∂t
− ∇ × (v × B) −

c
2

4πσ
∇2B = 0, (24)
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where c is the speed of light (again using CGS units). Since [η] = [ρ][x2]/[t]

and [σ ] = [t−1], one can define two more dimensionless parameters, the Reynolds

number

Re = ρV L/η (25)

and the magnetic Reynolds number

ReM = 4πσ V L/c2, (26)

where V and L are characteristic velocity and length scales, respectively, for the

problem at hand. This choice is somewhat arbitrary (e.g., one could use an inverse

characteristic timescale instead of V L for both Re and ReM), but it is a conven-

tional choice (somewhat like Eu versus Mach number). In addition, for ReM, the

constant 4π/c2 is chosen so that ReM ∼ 1 when the dissipation term is comparable

to the other terms in the Faraday equation. This is a common convention in defining

dimensionless parameters: near unity, the relevant term in the governing equations

is comparable to other terms, while if much larger than unity, the term is much less.

Note that ideal MHD implicitly assumes that Re ≫ 1 and ReM ≫ 1.

The choice of scales (that is, when and where to choose V and L in the problem)

depends on the question at hand, but it is not rigorously defined. If one is interested

in the collimated flow of a jet, but not the head, the details (scales and dimensionless

parameters) of the latter do not matter (though they may of course affect boundary

and initial conditions which would need to be scaled appropriately). The choice also

depends on the physics of interest. For magnetic diffusion, the appropriate spatial

scale is the scale on which B changes ‘significantly,’ while for momentum diffusion

(viscosity), it is the scale on which v changes.

2.3 Scaling Comments

Adding more physics (e.g., molecular heat conduction) means adding at least one

more dimensionless parameter (e.g., the Prandtl number). Consider the effect of

including radiation in the MHD equations, which adds at least two additional dimen-

sionless parameters. The first, the Boltzmann number, is the ratio of convective heat

flux by hydrodynamics to that of the radiative flux:

Bo = ρV C p/σBT 3, (27)

where C p is the heat capacity at constant pressure, σB is the Boltzmann constant, T

is the temperature, and V is a characteristic hydrodynamic velocity (e.g., the shock

velocity if a shock is present). The second is the optical depth or the average number

of mean free paths of a photon:

τ = L/λp = Lκρ, (28)
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where L is a characteristic spatial scale, λp is an average photon mean-free-path,

and κ is the opacity. If the problem also has viscosity, a radiative Reynolds number

needs to be considered. In general, any added physics needs to be evaluated for

significance relative to all the physics already in the problem. The value of Bo can be

used to determine whether radiative flux is important (relative to hydrodynamically

driven convection); if Bo ≫ 1, then radiative flux is unimportant. For two systems

to scale, Bo only needs to be much greater than unity for both systems. If radiative

flux is found instead to be important, then Bo needs to be the same for both systems.

The optical depth is defined differently: if τ ≪ 1, then transport of the radiation is

likely to be unimportant. In this limit, radiation can be treated simply as an energy

sink. For scaling, in the absence of full radiative transport, τ needs to be in the same

limit for both systems (much larger or much less than unity) or in the same value (if

near unity). This illustrates the increased difficulty of scaling when dimensionless

parameters are near unity.

It is difficult, if not impossible, to match all dimensionless parameters every-

where in an experiment, particularly boundary and initial conditions, so the exper-

iment must define the ‘important’ regions while making sure the ‘unimportant’

regions do not significantly affect the solution. However, parameters that are sig-

nificantly larger than unity (if properly defined as discussed above) do not have to

be equal between systems, so long as such parameters are much larger than unity in

both systems. There are caveats. For example, consider a viscous hydrostatic system

with a large Re (so Eq. (23) applies with B = 0). With η not identically 0, the

viscosity term is potentially perturbative, such that two scaled hydrostatic systems

that have different Re (though both much larger than unity) will behave significantly

differently at late times. Still, in general, dimensionless parameters that are much

larger than unity represent ‘ignorable physics’ for that problem.

2.4 Scaling Examples

Since perfect scaling of an astrophysical object in a laboratory experiment is not

possible, the experiment usually focuses on a region of interest. Here, I detail one

effort to experimentally scale the bow shock of a YSO.

Take a canonical YSO as having a Mach 30 jet with a scale L jet ∼ 500 AU.

With a pressure Pjet ∼ 10−9 dyn cm−2 and a density ρjet ∼ 10−21 g cm−3, we wish

to scale this YSO jet to a laboratory experiment. A given facility will have a limit

to Pexp; here, we use the Omega facility, where Pexp ∼ 1011 dyn cm−2 for a jet

experiment. Since the Euler number must be matched, Eu ∼ 30, the experiment

must select v or ρ to achieve the match. Usually, the latter is more controllable, but

it has less dynamic range. Choosing ρ ∼ 1 g cm−3, we find that v = Eu
√

P/ρ ∼
100 km s−1. Finally, the experiment must have the correct spatial scale to achieve

the correct temporal scale (or vice versa). Facilities tend to not have much dynamic

range here either, so one or the other may be set by the facility itself. The Omega

facility allows spatial scales of hundreds of microns, so in order to model the YSO

jet evolution for tjet = L jet

√

ρjet/Pjet ∼ 200 years, the experiment needs to last for
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texp = Lexp

√

ρexp/Pexp ∼ 60 ns. Fortunately, the diagnostics on Omega permit just

such an experiment. However, this exercise shows that it is much easier to scale from

an experiment (where choices are limited) to a similar astrophysical object than the

other way around.

Neither the YSO jet nor the experiment will have the above canonical values

everywhere, limiting the applicability of the scaling. However, scaling from exper-

iment to experiment is considerably easier. For example, assume that two systems

with large dimensionless parameters (say, Re) behave in the same way (with respect

to the physics that parameter describes) as long as both systems have values of, e.g.,

Re ≫ 1; it is not necessary for Re1 = Re2. It is possible to verify this assertion

by doing two experiments where only the time and space scales are changed; in

the case of such a ‘perfectly scaled’ hydrodynamic experiment, the equations are

unchanged, but Re does change [13]. Consider Fig. 6, where an experiment with

Re ≫ 1 is done at two different times, giving results 1 at time = t1 and 2 at

time = t2. If the experiment is temporally and spatially scaled by this same ratio

(t2/t1), result 1 should now look just like 2. If, on the other hand, Re does mat-

ter (even though it is much larger than unity), the results of the scaled experiment

might look like 3. This is a particularly important issue since Re for ‘numerical

experiments’, though larger than unity, is typically much less than the experimental

Re, so if Re still matters when much larger than unity, there is no reason to expect

calculations to be able to reproduce the experiments.

A summary of some canonical dimensionless values for some astrophysical

objects and experimental facilities is given in Table 1; the last line in the table refers

to the Omega experiment discussed in the previous section. Experiment values of

Fig. 6 Illustration of a perfectly scaled experiment. Adapted from [13]
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Table 1 Notional dimensionless parameters (adapted from [14]).

Environment Eu β Re ReM Bo τ

Warm ISM 1 × 101 3 × 10−1 1 × 107 1 × 1019 2 × 10−3 1 × 10−4

Dense cloud 6 × 100 3 × 10−2 7 × 1013 6 × 1014 1 × 10−9 2 × 10−5

Stellar atmosphere 1 × 101 3 × 100 5 × 1012 4 × 109 6 × 10−2 1 × 101

Stellar environment 1 × 100 3 × 105 5 × 1011 4 × 1013 3 × 10−5 3 × 103

AGN disk 1 × 101 3 × 10−8 7 × 107 6 × 1013 2 × 10−12 5 × 100

XRB disk 1 × 100 8 × 101 1 × 109 4 × 1011 5 × 10−4 1 × 103

YSO jets 3 × 101 3 × 100 1 × 105 1 × 1012 4 × 10−9 1 × 10−6

Omega hohlraum 1 × 100 3 × 101 3 × 103 5 × 101 4 × 10−1 9 × 10−3

NIF hohlraum 1 × 100 9 × 101 1 × 103 2 × 103 1 × 10−2 1 × 10−3

Z experiment 1 × 100 3 × 101 3 × 104 5 × 102 2 × 10−1 9 × 10−2

Short pulse laser 4 × 100 3 × 100 1 × 103 1 × 103 3 × 10−1 1 × 10−2

Omega jets (core) 5 × 100 5 × 10−1 1 × 105 1 × 10−6 1 × 109 1 × 100

Eu are somewhat lower than astrophysical objects. The magnetic β-parameter has

a large range of values in astrophysical objects, but it is generally near unity in

experiments (e.g., [15]). Both Re and ReM tend to be larger in astrophysical objects

than in laser experiments, but all tend to be larger than unity. Radiation tends to be

important in astrophysical objects, while it is not so much true during hydrodynamic

flow produced by the lasers. Finally, the optical depth varies considerably, but large

values are not yet attainable in (diagnosable) laser experiments. Thus, transparent

nonmagnetized low-Mach number flows are easily scalable to presently available

experimental facilities, but other types of systems may have difficulties.

It can be seen from Table 1 that the YSO/Omega scaling is not fully ideal. Prac-

tical issues such as diagnostics, target fabrication, and metrology cause the exper-

iment to evolve; it actually started as a scaled jet-induced supernova experiment

based on [21]. The equation of state of the materials in the experiment are not

Fig. 7 Examples of jet experiments on laser facilities. See [16–20]
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an ideal gas (the Ti may even still be a liquid; see Fig. 18). Also, there are large

gradients in Eu and other nonuniformities due to the impulsive nature of the laser-

driven jet drive; that is, the initial and boundary conditions are not scaled to the

YSO. However, the experiment does illustrate the possibility of conducting ‘mini-

YSO’ experiments to elucidate the nature and evolution of true YSOs. Additionally,

a much larger range of ‘jet-like experiments’ are available; some that have been

conducted over the years on Omega, Z, NIF, and Nova are shown in Fig. 7. Other

types of scaled astrophysics have also been done; one example investigating growth

of Rayleigh–Taylor (RT) spikes in supernovae is shown in Fig. 8.

Fig. 8 Bottom: Simulation of RT spike growth in a supernova [22]. Top: Scaled Omega experiment

of the same thing (e.g., [23–25]).
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3 Experimental Facilities

Here, I give a high-level overview of presently and soon-to-be operational exper-

imental facilities. The list is far from exhaustive and characteristics of individual

facilities often change (though usually for the better).

3.1 Omega

The Omega laser is run by the Laboratory for Laser Energetics at the University of

Rochester in New York in the United States. It has 60 beams available for spherical

implosion. A total of 30 kJ at a frequency of 3ω can be delivered over 1 ns. Direct

or indirect drive (using a hohlraum, described below) is available with a variety

of backlighter and detector choices. An X-ray CCD is even available [26]. Groups

with American collaborators can run experiments on Omega via the NLUF program

(the EU has a similar ‘Laserlab’ program). In April 2008, Omega was expanded

into ‘Omega-EP’ (extended performance). With a shot rate of 1 every 2 h and 2

new beams delivering in the optical 2.6 kJ in 10 ps or 1 kJ in 1 ps, Omega-EP is

an ideal peta-watt (PW) laser for fast-ignition inertial confinement fusion (ICF)

experiments.

3.2 Gekko

The Gekko XII laser at Osaka University in Japan has 12 beams with a total of 10 kJ

of energy deliverable over 1 ns. Another 0.4 kJ 0.5 PW beam is available for fast

ignition experiments, with another beam coming online to deliver a total of 10 kJ

pulse in 10 ps. The Gekko is a green laser in that it uses frequency doubling rather

than tripling, as is typical.

3.3 NIKE

The NIKE facility at the Naval Research Laboratory in Washington, DC, USA, is

a KrF laser with 44 beams. Compared to typical Nd lasers, it has better beam uni-

formity, so it is a good facility for minimizing RT growth in an imploding fusion

capsule. However, it only delivers 4–5 kJ of UV light in a 4-ns pulse.

3.4 HELEN

The HELEN laser is operated by AWE in the UK. It has two beams delivering

500 J each in 1 ns at a wavelength of 527 nm. The achieved intensity on the target is

more than 1019 W cm−2. A third beam, used as a backlighter, delivers 25 J in 500 fs.

HELEN is being upgraded to ORION, a PW-scale laser.
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3.5 VULCAN

VULCAN is run by the Rutherford Appleton Laboratory in the UK. It delivers up

to 1 kJ, with a pulse duration between 700 fs and 5 ns and can achieve intensities of

1020 W cm−2. It is being upgraded to a PW laser with intensities of 1021 W cm−2. It

has diagnostics including image plates for capturing X-rays and radiochromic films

for capturing protons [27].

3.6 LULI

The lasers of the Laboratoire d’Utilisation des Lasers Intenses (LULI) are at the

Ecole Polytechnique in France. They can produce a total of 30 J over 300 fs, for

more than 100 TW of power. Soon they will be able to produce PW power levels,

with resulting intensities of more than 1021 W cm−2. For scaled jet experiments, a

variety of diagnostics (e.g., VISAR and gated optical imaging) are available to infer

quantities such as velocity, temperature, and emissivity [28, 29].

3.7 Zebra, MAGPIE, and Z

Zebra is located at the Nevada Terawatt Facility (NTF) at the University of Nevada

in Reno, NV, in the United States. It has a 2 TW pulsed z-pinch with a 100 TW

coupled laser. It is being upgraded to Leopard, a 35 J, 350 fs, 1019 W cm−2 beam.

The facility is ideal for scaled experiments of plasma flows interacting with mag-

netic fields [30]. The MAGPIE facility at Imperial College, London, is a TW pulsed

power machine that can generate over an MA for more than 100 ns. It has an

extensive suite of diagnostics, from Schlieren photography to XUV imaging, that

has been used to observe z-pinch-induced jets interacting with a target [31]. The

Z-machine at Sandia National Laboratory in New Mexico in the USA is another

pulsed power z-pinch machine, using a 20 MA electrical discharge. The imploding

plasma produces an X-ray pulse of 290 TW for a few ns. The Z-machine has just

been refurbished (and renamed ‘ZR’) to produce 350 TW for a total X-ray output of

2.7 MJ. A variety of scaled experiments from jets [32] to supernova blastwaves [33]

have been conducted on Z. Illustrations of how a z-pinch works are shown in Fig. 9.

The parallel currents produce an inward J × B force that accelerates the wires.

When the wires implode cylindrically on-axis, they release MJs of X-ray energy.

This radiation can be used to drive a number of different experiments at different

angles for the same shot. Note that z-pinch facilities are inherently cylindrical while

direct drive facilities for use in ICF generally permit spherical implosions, with a

resulting higher compression ratio.

3.8 NIF and LMJ

The National Ignition Facility (NIF) at LLNL in California in the USA is scheduled

for full operation in 2010; it has already delivered 1.1 MJ in the ultraviolet. It will
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Fig. 9 Schematic of how a z-pinch works (from lectures by R. P. Drake)

eventually have 192 beams delivering 4.2 MJ in the infrared over a timescale of up

to tens of ns. NIF is designed to ignite fusion capsules and presently has a slew of

available diagnostics from VISAR to a gated X-ray CCD. The Laser Mega-Joule

(LMJ) Facility in France will be a similar facility, with 240 beams delivering 2 MJ

of energy with a peak power of 550 TW. LIL is the LMJ prototype; first light for the

full 240 beams is scheduled for 2009. One of the first experiments done on NIF, in

the early light phase, is shown in Fig. 10. The shock in the left image should have

been flat; gold fiducial wires showed the misalignment of the drive, which was fixed

for later jet shots, as shown in the right image.

Figure 13 illustrates the scale and complexity of modern laser facilities. The room

housing the Z chamber is the size of a small house, with a relatively small attached

control room. The entire building is a Faraday cage. The building holding NIF, on

the other hand, is the size of three (American) football fields. Interestingly, the Z

building resonates noticeably with each shot while NIF is eerily silent.

Fig. 10 NIF early light radiographic images of a planar shock (left) and a jet (right). See, e.g., [34]
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4 Detailed Example and a Challenge

As mentioned above, we have conducted experiments on Omega. A schematic of the

experiment target and assembly is shown in Fig. 11. For this particular experiment,

we used indirect drive that is, the drive laser beams enter the hohlraum at an angle,

ablating the gold which in turn produces a pressure pulse at the surface of the target.

Figure 12 shows an older target design which used direct drive; the drive lasers

directly ablate the surface of the target. Even though the Au shield and Ti target

were coated with plastic to minimize background, the design resulted in a very high

background due to photons leaking through the glue gap in the figure. However, we

redesigned the gold shield to fix that problem, since we thought that direct drive was

still needed to avoid a second jet at late times (we eventually moved to indirect drive

due to unsolved target alignment issues). We needed to backlight the target several

hundred nano seconds after the drive in order to capture late-time turbulent behavior.

In order to get good contrast, we used a V backlighter with a Ti target. A schematic

showing the ‘snout’ that contains the film is shown in Fig. 14. Details of the foam

target as well as an example of a simulated radiograph are shown in Fig. 15. A 3D

schematic representation of how the laser beams interact with the target is shown in

Fig. 16.

Figure 17 shows spectral densities extracted from a film of a typical Omega jet

shot. The background arises from X-ray photons of less than ∼ 10 keV.

After subtraction, given the opacity and assuming cylindrical symmetry for the

foam, a 3D density profile can be extracted using the unsaturated pixels.

Fig. 11 Schematic of the indirect drive targets used on Omega for our jet experiments. Not all

parts are shown to scale
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Fig. 12 Schematic of older direct drive targets used on Omega, showing the potential leaking of

X-rays through the plastic and glue gap between Au and Ti. The foam (not shown) is to the right

of the washer (in gray) and the backlighter is located off the top of the diagram

Figure 18 shows two radiographs from the Omega jet experiments taken at

200 ns; it is now possible to obtain two radiographs at the same time for the same

shot (e.g., [35]). Uniform illumination is sometimes an issue, as can be seen in the

left image in Fig. 18. The right image in Fig. 18 shows the gold fiducial grid, used as

a spatial reference in determining resolution, and what appear to be liquid droplets

of Ti. The latter is not too surprising given that the peak temperature during jet prop-

agation is only tens of electron Volts. Note the Ti backlighter penetrates more deeply

Fig. 13 Illustration of the scale and complexity of the Z (left) and NIF (right) chambers
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Fig. 14 Details of the snout (SPCA) setup. Filters are also in place to select for the backlighter

energy

into the ‘flute’ of the jet, showing its inner structure, than the V backlighter does.

Both images show the ‘pedestal,’ where the shock has broken out of the backside of

the Ti washer, as well as the (variable) 3D nature of the jets.

The (unknown) initial conditions of the experiment (target roughness, drive uni-

formity, etc.) can have a large effect, essentially determining the fine structure of the

jet. Issues of repeatability caused by variation in initial conditions made us rethink

how the Ti washer was made. Figure 19 shows scanning electron microscope (SEM)

images of our initial and redesigned targets. The redesign provided a much smoother

surface, with less than 1 µm RMS surface roughness, enabling more repeatable ini-

tial conditions in the experiment. This feedback between the experiment designers

and the target fabrication is essential.

Despite nonrepeatable effects caused by initial conditions, the displacement and

diameter of the bow-shock can be effectively modeled. It is this type of experiment,

which illustrates where codes succeed and where they fail, that is most useful. From

Fig. 15 Left: Details of the foam and target for the direct drive experiments on Omega. Right: A

simulated radiograph from a PETRA simulation
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Fig. 16 A 3D schematic showing the drive and backlighter beams for the direct drive Omega jets.

The grid used in the experiments was semi-circular rather than the rectangular grid shown here

Fig. 17 Curves showing background (bottom), saturated (top), and unsaturated foam (middle) line-

outs across the film of a typical Omega jet shot
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Fig. 18 Backlighter images from the jet experiments on Omega. The images are scanned in from

the film. For scale, the grid lines, visible at the top of the images, are 60 Mm apart

a modeling perspective, this brings up a qualitative aspect of scaling: If a well-scaled

experiment may be modeled by a numerical code, then the code may be applied

more confidently to a similar astrophysical system; greater success modeling the

experiment leads to greater confidence in the model output.

Results of simulations and experiments of a hohlraum-driven jet in a cylindri-

cal foam are given in Fig. 20. The model successfully predicts the diameter of

the bow-shock and describes the evolution of the pedestal. Deviations between the

modeled fits and the experimental data are still under investigation. PETRA, an

AWE Lagrangian code, underpredicts the displacement of the pedestal, while both

PETRA and RAGE, a LANL/SAIC Eulerian AMR code, overpredict the displace-

ment of the bow-shock. The latter may be due to equation-of-state issues (foam is

notoriously difficult to model) or dissipation mechanisms that are not being properly

captured (e.g., turbulence). Both codes model the bow-shock diameter to within the

Fig. 19 SEM of a target using standard drill (left) and after burr removal and polishing (right).
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Fig. 20 Comparison of Omega jet data to simulations

shot-to-shot variation, though at late times the simulations suggest a flattening that

may not be in the data.

The latest version of the jet experiments contained a ball of polystyrene in the

0.1 g cm−3 hydrocarbon foam. A total of 12 laser beams ablated the gold hohlraum.

The resulting pressure pulse sent a cap of Ti down the ‘free run’ region (the hole in

the washer). This collimated material collided with the polystyrene sphere, produc-

ing a deflected jet which was imaged by an X-ray backlighter. We investigated how

the deflected jet behaved with different locations for the sphere. Figure 21 shows a

schematic of the experiment, while Fig. 22 shows pre-shot images of a target. The

foam is not optically transparent, so X-ray radiographs are used to locate the ball.

The images show that the mating of the foam to the backside of the Ti washer is

not perfectly flat, leading to perturbations not included in any of the simulations.

Also, a stalk is required to hold the ball in place as the foam solidifies around it; this

is not ideal for the scaling of the experiment, but the stalk can be included in the

simulations.

Coarse resolution 3D simulations (with the finest resolution larger than ∼ 6 µm)

of the ball-in-foam experiments show a smooth intact ‘flute,’ while the data show

significant small-scale structure and breakup. Finer resolution simulations begin to

show this structure, but 1 µm resolution is required to capture the breakup of the

Mach ring (the ‘grass’ on the pedestal visible in the right image of Fig. 18). This is

Fig. 21 Schematic showing the evolution of the ball-in-foam jet target. The impact parameter and

displacement of the ball are varied from shot to shot
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Fig. 22 Pre-shot optical (top) and X-ray (bottom) images for a ball-in-foam target

not unsurprising since the low-numerical Re is not likely to capture such ‘mixing’

behavior correctly. However, the low-resolution simulations still capture the large-

scale structure correctly, just as they did in the original jet experiments (see Fig. 20).

This is illustrated in Fig. 23. Lack of knowledge of initial conditions prevents the

simulations, regardless of resolution, from reproducing in detail the fine-scale fea-

tures of the data. Although the experiments are likely not turbulent in the sense of

having a fully developed inertial range, they are certainly heavily ‘stirred’, and so

the resulting structures still have some memory of the initial conditions.
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Fig. 23 Data (upper left) and RAGE simulations (12 µm resolution: lower left, 1 µm resolution:

upper right) of a ball-in-foam Omega jet experiment. Spatial units are in microns. The circle shows

the initial ball location, while the lines are guides showing different features of the jet

The ball is a scaled representation of the giant molecular cloud that HH270 is

colliding with to produce HH110. The scaling is not perfect (e.g., the density ratio

between the foam and the ball is an order of magnitude too low).

However, compare Fig. 24 with Fig. 1 of [36]. Although the jets are launched

in different ways, the qualitative structure in density and velocity space is similar,

illustrating the possibility of learning about how the YSO jet is being deflected from

the laboratory experiments.

Our latest Omega shots are not jets or even explicitly scaled astrophysics experi-

ments; rather, they explore a generic planar shock running into a spherical obstacle.

Such shocks appear in astrophysical objects (e.g., red supergiant winds, planetary

nebulae, etc.) but these are not specifically scaled to them. Density plots from a

RAGE simulation of the shock experiment are shown in Fig. 25. The left image

shows the initial setup. A layer of plastic laced with Br is needed to prevent X-ray

radiation from reaching the Al ball directly; if this happens, the ball would expand
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Fig. 24 RAGE simulation of the ball-in-foam Omega experiments that are scaled versions of

HH110/270

prior to the shock arrival. The right image shows how the ball has been destroyed

by 250 ns. We expect the downstream flow to show Widnall instabilities due to the

nonaxisymmetric vortex ring [37]. Even without imposed perturbations, 3D simula-

tions show breakup on scales of tens of microns; Ni or Zn backlighters with small

enough pinholes should be able to image these features. We also plan experiments

with multiple obstacles.

Figure 26 shows a lineout of Eu through the simulation at 250 ns. The flow is

supersonic but not vastly so and highly variable in time and space. If this experiment

is scalable to an astrophysical object, with correct initial conditions, the variations in

Fig. 25 RAGE simulation of the planar shock experiment at 0 time (left) and after 250 ns (right).

The axisymmetric simulation had a resolution of 1.5 µm. The large arrow traces the lineout of

Euler number shown in Fig. 26
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Fig. 26 Lineout of the Euler number for the arrow shown in the right image of Fig. 25

Eu shown in Fig. 26 will also be present in the astrophysical object. This illustrates

the predictive possibilities of laboratory astrophysics.

4.1 A Scaled AGN Jet

To my knowledge, no scaled AGN jet experiment has ever been attempted, so this is

a potential example of future work. Taking numbers based very roughly on surveys

of radio loud objects with large lobes and jets, one can determine representative

AGN jet characteristics. Unlike the YSO jets, it is likely to be inaccurate to assume

infinite conductivity, so nonidealized magnetic fields need to be included. The ques-

tion is Can present or near-future facilities do experiments that are scaled AGN

jets? Take, for example, the following values: L = 1019 cm, V = 109 cm s−1,

ρ = 10−27 g cm−3, p = 10−11 dyn cm−2, and B = 15 µG. With these canonical

values, one gets for the Euler and Alfvén scaling parameters: Eu = V
√

ρ/p ∼ 20

and β = 8πp/B2 ∼ 1, respectively. Leaving aside issues of thermal conduction,

viscosity, and radiation, one can look at the ideal MHD scaling. Given experimental

facility limitations of pexp ∼ 1012 dyn cm−2 and ρ ∼ 5 g cm−3, in order to Euler

scale, one needs vexp ∼ 300 km s−1. This sets an experimental timescale of

∼ 20 ns. These constraints are feasible with today’s facilities. However, to Alfvén
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scale, one needs Bexp ∼ 5 MG. Upgrades at the NTF and the Prague Asterix Laser

System in the Czech Republic [38] are achieving fields of more than 1 MG, so a

field of 5 MG is not far out of reach. The difficulty is likely to be in scaling the other

pieces of physics, such as radiation. I leave it to the next generation of experimental

astrophysicists to develop an experiment that accurately represents an AGN jet.

5 Summary

Many astrophysical phenomena are difficult or impossible to observe directly with

sufficient detail or for long enough times to understand them. The inability to con-

duct reproducible experiments of these phenomena is also limiting. However, they

may be investigated using appropriately scaled laboratory experiments. If all dimen-

sionless parameters describing two systems are the same, they will behave identi-

cally since the equations describing their behavior will be the same. In practice, lim-

itations on achievable laboratory conditions restrict investigations to specific aspects

of the relevant systems (radiative transfer in supernovae, Mach disks in YSOs, etc.)

However, with upgrades and new facilities, scaling using laboratory astrophysics is

an expanding field with many opportunities.

Acknowledgement Much of the work presented here was done by members of the NLUF Jet

Group, particularly B. Wilde, P. Rosen, J. Foster, B. Blue, and P. Hartigan. The Omega experiments

would not be possible without the assistance of the LLE support staff and AWE, GA, and LLNL

target fabrication teams.

References

1. Reipurth, B., et al.: A&Ap. 311, 989 (1996) 2

2. Coker, R. F., et al.: ApSS. 307, 57 (2007) 2

3. Barenblatt, G. I. R.: texitScaling, Cambridge Texts in Applied Mathematics, Cambridge

University Press, Cambridge, UK 3

4. Bose, E., Rauert, D.: Phys. Zeit. 10, 406 (1909) 3, 4

5. von Karman, Th.: Phys. Zeit. 12, 283 (1911) 4

6. von Karman, Th.: TexitAerodynamics, Cornell University Press, Ithaca (1957) 4

7. Landau, L. D., Lifshitz, E. M.: TexitFluid Mechanics, 2nd edn., Vol. 6, Butterworth-

Heinemann, Oxford (1997) 4, 241

8. Sedov, L.: Prikl. Mat. Mekh. 10, 241 (1946) 5

9. Taylor, G. I.: Proc. Roy. Soc. 201, 159 (1950) 6

10. Zeldovich, Y., Raizer Yu, Y.: Texitphysics of Shock Waves and High Temperature Hydrody-

namic Phenomena, Academic, New York (1967) 7

11. Ryutov, D., et al.: ApJ. 518, 821 (1999) 8

12. Ryutov, D., et al.: ApJS. 127, 465 (2000) 9

13. Ryutov, D., Remington, B. A.: Physics of Plasmas. 10, 2629 (2003) 12

14. Castor, J. I.: ApSS. 307, 207 (2007) 13

15. Presura, R., et al.: ApSS. 307, 307 (2007) 13

16. Foster, J. M., et al.: Physics of Plasmas. 9, 2251 (2002) 13

17. Foster, J. M., et al.: ApJL. 634, L77 (2005) 13



Laboratory Astrophysics and Scaling 29

18. Blue, B. E., et al.: Physics of Plasmas. 12, 6313 (2005) 13

19. Blue, B. E., et al.: Phys. Rev. Lett. 94, 095005 (2005) 13

20. Blue, B. E., et al.: Journal de Physique IV. 133, 107 (2006) 13

21. Khokhlov, A. M., et al.: ApJL. 524, L107 (1999) 13

22. Kifonidis, K., et al.: A&Ap. 408, 621 (2003) 14

23. Drake, R. P.: Plasma Phys. Contr. Fusion. 47, 419 (2005) 14

24. Drake, R. P., et al.: ApJ. 564, 896 (2002) 14

25. Kuranz, C. C., et al.: ApSS. 307, 115 (2007) 14

26. Sublett, S., et al.: ApSS. 307, 47 (2007) 15

27. Koenig, M., et al.: ApSS. 307, 257 (2007) 16

28. Loupias, B., et al.: ApSS. 307, 103 (2007) 16

29. Michaut, C., et al.: ApSS. 307, 159 (2007) 16

30. Sotnikov, V. I., et al.: ApSS. 307, 99 (2007) 16

31. Ampleford, D. J., et al.: Phys. Rev. Lett. 100, 035001 (2008) 16

32. Bennett, G. R., et al.: APS Meeting Abstracts, 1015P (2004) 16

33. Edens, A. D., et al.: ApSS. 307, 127 (2007) 16

34. Landen, O. L., et al.: Eur. Phys. J. D. 44, 273 (2007) 17

35. Kuranz, C. C., et al.: Rev. Sci. Instrum. 77, 327 (2006) 19

36. de Gouveia Dal Pino, E. M.: ApJ. 526, 862 (1999) 25

37. Widnall, S. E., et al.: J. Fluid Mech. 66, 35 (1974) 26

38. Nicolaı̈, P., et al.: ApSS. 307, 87 (2007) 28



Laboratory Studies of Astrophysical Jets

Andrea Ciardi

Abstract Jets and outflows produced during star-formation are observed on many

scales: from the “micro-jets” which extend over a few hundred Astronomical Units

to the “super-jets” which propagate over distances of a few parsecs. Recently, a new

“class” of short-lived (hundreds of nano-seconds) centimetre-long jets has emerged

in the laboratory as a complementary tool to study the physics of astrophysical jets.

Here I will discuss and review the work aimed at “simulating” protostellar jets in

the laboratory using z-pinch machines.

1 Introduction

The connection between astrophysics and laboratory experiments is often made in

the context of atomic physics, and in particular spectroscopic studies. These gener-

ally concentrate on the micro-physics of astrophysical plasmas, providing important

data on cross sections, opacities, grain chemistry and other processes that are vital

to the modelling and interpretation of astronomical observations. Indeed, detailed

laboratory opacity measurements of iron absorption lines have greatly improved

models of pulsation periods in Cepheid variables [17].

Recreating large-scale astrophysical phenomena in the laboratory has also

inspired scientists. A pioneer in the use of laboratory experiments to study space

physics was the Norwegian scientist Kristian Birkeland (1867–1917), who used

a terrella1 and gas discharges to investigate auroral phenomena [22]. Indeed, as

early as the seventeenth century a terrella was used by William Gilbert to study

the Earth’s magnetism [40]. More recently, the idea that physical problems in the

cosmos may be elucidated by more mundane Earth-based events, such as fluid flows

and nowadays laboratory plasmas, was taken up in a series of meetings held just

after World War II, with the aim: ‘To bring together workers from astrophysics and

from aerodynamics; ...to consider which developments in fluid mechanics may be

A. Ciardi (B)

Université Pierre et Marie Curie, LERMA, UMR 8112, Observatoire de Paris, 5 Place Jules

Janssen, 92195 Meudon, France, andrea.ciardi@obspm.fr

1 A terrella is a small (tens of centimetres) magnetized model Earth.
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applicable to astrophysical problems, and to arrive at a formulation of these prob-

lems in such a way that mathematicians and fluid mechanics people may find a

way of attack’ [55]. Topics of discussion included accretion, gas and dust in the

interstellar medium, shocks and turbulence; the latter being very popular with those

working in fluid mechanics. An indication that this was taken rather seriously can

be gleaned from the list of scientists who took part in the meetings. These included

the likes of Heisenberg, Sciama, Bondi, Hoyle, Bok, Burgers, Seaton and Cowling.

At the meeting held in Cambridge in 1954, Chandrasekar and Fermi contributed

a preliminary paper but did not actually attend; while Hubble, although listed as

participant, had died in fact 9 months earlier.2

In the last 10 years or so, experiments on pulsed power facilities (z-pinches)

and high-power lasers are leading the way in studying astrophysical phenomena in

the laboratory. Emerging areas of research have been aimed at producing complex

dynamical phenomena, such as compressible hydrodynamic mixing, hypersonic

jets, shock physics, radiation hydrodynamics and photoionized plasmas, to name

a few. These can help to understand the physics of phenomena associated with a

wide range of astrophysical objects, including protostellar and AGNs jets, super-

novae explosions and the subsequent generation of remnants and photoevaporated

molecular clouds. Here we will restrict the discussion to the jets produced on z-pinch

facilities and in particular to the work performed on the MAGPIE generator at Impe-

rial College. For a broader and more detailed discussion of laboratory astrophysics

on lasers and z-pinches we refer the reader to the review by Remington et al. 2006

[46] and the book by Drake 2006 [21].

2 Plasma Conditions in z-Pinch and Laser Experiments

Typical plasmas produced on z-pinch and laser facilities have pressures of ∼ Mbar,

corresponding to energy densities of ∼ 1012 erg cm−3, at a fraction of solid den-

sity. An overview of the plasma conditions attainable on experimental installations

together with some of those found in space is given in Fig. 1. z-Pinch facilities rely

on stored electrical energy (hundreds of kilojoules) to deliver large currents (∼ of a

few mega amperes) over a short time (∼ 100–1000 ns) to a ‘load’ usually consisting

of a gas or thin metallic wires. These facilities typically produce volumes of plasma

of ∼ 1 cm−3 (for a review see [48]). Laser facilities instead rely on focusing onto

a solid or gaseous target, single or multiple high-power laser beams. These con-

centrate several kilojoules of energy, over timescales ∼ pico- to nano-second, into

plasma volumes of ∼ 1 mm−3. The future arrival of the Laser Megajoule (LMJ)

Facility in France and the National Ignition Facility (NIF) in the USA will produce

fusion plasmas under conditions similar to stellar interiors.

For the present discussion (i.e. jets) it is more interesting to look at the dynamical

conditions that can be obtained in the laboratory. When the energy available on

z-pinches and lasers is partially converted into kinetic energy, it can generate hyper-

2 As a final piece of trivia, Hubble’s funeral was never held and the location of his resting body

never disclosed.
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Fig. 1 Plot of the temperature versus density for a variety of laboratory and astrophysical plasmas.

Lines of constant pressure are shown for fully ionized hydrogen. High-energy density laboratory

astrophysics is in the regime of pressures ≥ 1 Mbar and the typical conditions currently obtained

in laser and z-pinch experiments are easily in this range. The conditions that will be accessible

in future magnetic fusion (MF) reactors and inertial confinement fusion (ICF) laser experiments

are also indicated. The main phases of the interstellar medium (ISM) are shown. The intergalactic

medium (IGM) and the intracluster medium (ICM) lie outside the plot at lower densities

sonic (Mach numbers M > 5), radiatively cooled flows with characteristic velocities

of the order of 100–1000 km s−1. These flows can include dynamically important

magnetic fields, ∼ several 106 Gauss, and have a large range of plasma-β (the ratio

of thermal to magnetic pressure), 1 >> β >> 1. In such cases, our inability to

obtain the adequate astrophysical plasma conditions (see Fig. 1) may be overcome

by producing scaled ‘conditions’ of the phenomena of interest. These are discussed

in the next section.

3 Relating Laboratory and Astrophysical Phenomena

The framework to relate experiments to astrophysical phenomena, within magneto-

hydrodynamics, was developed in a series of papers by Ryutov et al. [47, 49–51].

A general discussion of hydrodynamic scaling can also be found in [56], and in the

present volume it is reviewed in detail by Cocker. An interesting duality between

imploding and exploding systems is given in [43]. For collisionless plasmas the

scaling conditions are described in [20].

Here we will qualitatively introduce some of the ideas behind scaling and shall

be concerned with systems which are to a good degree magnetofluids. As a specific

example we take the MHD jet launching, which will be later discussed in more

detail in the context of laboratory experiments. Figure 2 shows schematically the

comparison of the ‘environment’ producing astrophysical and laboratory jets. The

details of the experimental set-up depicted are not important at this stage; it is suf-

ficient to say that the physical processes leading to the distributions of magnetic

fields, plasma density, pressure and velocity inside the ‘modelling box’ (MB) are

completely different for the two systems. However, because we are interested in

studying experimentally the collimation and launching of the jet in the MB, we are
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Fig. 2 The lower part of each plot shows schematically the ‘engine’ that produces astrophysical

(left) and laboratory jets (right). The physical mechanisms are clearly very different; however, we

are interested in the scaling of the flows inside the modelling boxes

concerned only with the differences that may be present there. The physical model to

be employed in the MB is that of ideal MHD (for an introduction to MHD, see [44]).

While this is a good approximation for the astrophysical case, it is not usually the

case for the experiments, which have to deal with nonideal effects arising, for exam-

ple, from thermal conduction, viscosity and resistivity. Nevertheless the experiments

can be designed so that the ideal MHD approximation is valid at least inside the MB,

thus making the set of equations describing the plasma evolution in the two MB the

same. For scaling purposes this is, however, not sufficient, it is also fundamental

for the initial (and boundary) conditions in the two MB to be geometrically similar.

Meaning that at some arbitrary time, the initial spatial distributions of all physical

quantities (density ρ, velocity V, pressure P and magnetic field B) are the same.

Finally, the actual scaling factors relating the physical variable in the two systems

and their initial distributions should obey the following constraints:

ṼL

√

ρ̃L

P̃L

= ṼA

√

ρ̃A

P̃A

,
B̃L
√

P̃L

=
B̃A
√

P̃A

,

where the tilde denotes characteristic (dimensional) values for the laboratory (L)

and astrophysical (A) plasmas. If the aforementioned conditions are met, namely

the ideal MHD equations hold, the initial conditions are geometrically similar and

the constraints on the scaling factors hold, then the evolution in the modelling boxes,

from some initial time and over the scaled time span, will be indistinguishable. The

addition of extra physical processes, for example, radiation, increases the constraints

to be satisfied and hence the difficulty in obtaining an exact scaling (see, for exam-

ple, [7]).

Two points need to be clarified. The first regards obtaining geometrically similar

initial conditions in the laboratory. This is clearly very difficult and it has been

done exactly in only a few cases [45]. The question also concerns which initial
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condition should be used. Obviously observations cannot be expected to provide 3D

distributions of all the quantities of interest, if they did the problem would be almost

solved! Then, with observational constraints in mind, we resort to models, which

are in general as difficult to reproduce. The usefulness of laboratory astrophysics,

however, goes beyond strict scaling. By using ‘reasonable’ initial conditions, as it is

usually done in numerical simulations, we can study in detail complex astrophysical

phenomena in a repeatable and accessible manner. In addition the possibility of val-

idating astrophysical codes using laboratory data is also very important. The second

point is on the accuracy of the approximation of ideal MHD for laboratory plasmas,

and more specifically the ones produced on z-pinch installations. Neglecting the

effects associated with viscosity, thermal conduction and resistivity (the ideal MHD

approximation) means that the Reynolds (Re), Peclet (Pe) and magnetic Reynolds

(Rem) numbers are Re, Pe, Rem >> 1. While for YSO jets these dimensionless

numbers are very large (see Table 1), for laboratory jets they are generally many

orders of magnitude smaller, thus calling into question the validity of the ideal

MHD approximation. However, the values obtained in the experiments should be

compared to astrophysical numerical simulations, where because of the finite accu-

racy of the numerical schemes employed, the ideal MHD approximation also breaks

down. Unless included explicitly in the simulations, viscous and resistive dissipation

and thermal conduction occur at the grid level through unphysical numerical trunca-

tion errors. Existing ideal MHD simulations of jets have dimensionless numbers in

the range 50–1000, well within the reach of laboratory experiments. In some case,

as for the Reynolds number, the laboratory values can be orders of magnitude larger.

Thus laboratory astrophysics experiments can be very useful in studying complex

and intrinsically nonlinear 3D phenomena, in regimes where accurate numerical

simulations are particularly difficult to perform, and thus it represents a powerful

complementary tool to astrophysical modelling. As a final justification: ‘Real exper-

iments are also irreplaceable in providing new insights into subtle physics issues and

in stirring the creative imagination of scientists’[50].

4 Young Stellar Jets from z-Pinch Machines

In this section we shall discuss the z-pinch studies of astrophysical jets. It is worth

mentioning that the time for an experiment to reach ‘maturity’: from the conception,

design and first experiments to the modelling, data analysis and then the application

to astrophysical models is of the order of 3–5 years, depending on its complex-

ity. Considering that most of the experiments, both on laser and on z-pinches, are

less than 10 years old, it should not come as a surprise that in many instances the

applications to astrophysics are not yet fully developed or very clear. Although we

shall restrict our discussion to jets, there are other areas of laboratory astrophysics

research on z-pinches that are well developed, such as equations of state studies

for planetary interiors and photoionized plasmas relevant to accretion disks around

compact objects. These are thoroughly reviewed in [46] and we refer the interested

reader to that paper.
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Table 1 Characteristic conditions in laboratory (z-pinch) and YSO jets

Laboratory YSO

Fluid velocity [km s−1] 100–400 100–500

Density [g cm−3] 10−4–10−6 10−18–10−20

Temperature [eV] 5–200 0.5–100

Magnetic field [G] 104–106 10−3–103

Dynamical age [ns] 200–400 1022

Length [cm] 2–4 1017

Radius [cm] 0.5 1015

Mass flux [M⊙ year−1] 10−33 10−7–10−8

Mean ionization 5–10 10−3–1

Sound speed [km s−1] 103–104 103–104

Radiative cooling time [ns] 4–40 1018

Mean free path [cm] 10−5 109

Magnetic diffusivity [cm2 s−1] 104 108

Kinematic viscosity [cm2 s−1] 10−3–10 1014

Thermal diffusivity [cm2 s−1] 103–106 1015

Mach number 5–40 >>5

Rem 10–103 >1015

Re >104 >108

Pe 50–104 >107

Density contrast 0.1–10 >1

Cooling parameter 0.01–10 <1

Localization parameter <10−4 <10−6

Plasma-β 0.01–100 0.01–100

4.1 Hydrodynamic Jets from Conical Wire Arrays

Conically converging flows were investigated in astrophysics as a possible mech-

anism for converting wide angle winds into collimated jets. Such models do not

require magnetic fields, at least to collimate and launch the jet, and rely instead on

purely hydrodynamic means [52, 6]. Within this framework and with the aim of

producing hydrodynamic jets to be used for interaction studies, a series of experi-

ments [31, 10] were developed on the z-pinch generator MAGPIE. The schematic

of the experimental configuration is shown in Fig. 3. It consists of a conical array of

micron-sized metallic wires driven by a current of 1 MA rising to its peak value in

240 ns. The basic mechanism of plasma formation in wire arrays is the following:

resistive heating rapidly converts the wires into a heterogeneous structure consisting

of a cold (< 1 eV) and dense liquid–vapour core, surrounded by a relatively hot

(10–20 eV) and low-density (∼1017 cm−3) plasma. Most of the current flows in the

latter, where the resistivity is lower, which undergoes acceleration by the J × B

force towards the array axis. These streams of plasma have characteristic velocities

of ∼ 100–150 km s−1 and corresponding Mach numbers M ∼ 5. The wire cores act

as a reservoir of plasma, replenishing the streams during the entire duration of the

experiment (several hundreds of nano-seconds). The converging plasma is virtually

magnetically field-free and the interaction on axis is hydrodynamic in character. The

collision produces a standing conical shock where part of the kinetic energy of the
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Fig. 3 (a) Typical arrays are made with 16 tungsten wires, each with a diameter of 18 μm. The

smaller radius of the array is 8 mm and the wires are inclined at an angle of 30◦ with respect to

the axis. The axial length of the array is 12 mm. Continuous plasma streams converge on axis pro-

ducing a conical shock which redirects the flow axially. (b) Time-resolved, filtered XUV emission

from a laboratory jet. Emission from the region in between the dotted lines is screened by the

anode. As the jet propagates it cools down and its emission decays; however, it is again visible

where the jet interacts with a background plasma

streams is thermalized. However, it is important to note that the plasma streams are

not perpendicular to the surface of the conical shock. Thus the component of the

velocity parallel to the shock is continuous across the shock and the flow is redi-

rected upwards into a jet. Typical jet velocities are ∼ 100–200 km s−1 and hyper-

sonic jets with M > 10 can be produced by this mechanism. The jet collimation

and Mach numbers depend predominantly on the level of radiation cooling in the

plasma, which can be changed experimentally by varying the wire material (Al,

Fe, W and so on). Increasing the atomic number of the wires increases the rate of

cooling from the plasma, lowers its temperature and leads to the formation of more

collimated jets (with higher Mach numbers) [10, 31, 32]. These jets are used to

study the propagation and interaction with an ambient medium, which are described

in Sect. 4.3. The characteristic conditions and dimensionless parameters obtained

are shown in Table 1.

It is possible to design and modify the experiments to include additional physics,

such as dynamically dominant magnetic fields and rotation. Indeed, for accretion

onto the forming star to occur, angular momentum needs to be removed from the

in-falling material. In combination with the processes present in the accretion disk,

such as MHD instabilities and turbulent transport, jets and winds can also remove a

considerable fraction of the excess angular momentum from the accreting flow [16].

One of the obvious implications is that jet will be rotating and some confirmation

has arrived with recent observations of rotation in a number of YSO jets [15]. Super-

sonically rotating laboratory jets and flows of astrophysical relevance were recently

produced for the first time [2] using a variant of the conical wire array. Rotation in
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Fig. 4 The experimental set-up is similar to that shown in Fig. 3, in this case, however, the wires are

twisted in the azimuthal direction (see main text). (a) Azimuthally averaged profiles of azimuthal

velocity, density and electron temperature as a function of radial position, taken 6 mm above the

cathode 200 ns after the start of the current pulse. The profiles are for different twist angles of

the array, which can be used to modify the angular rotation in the jet. (b) Isodensity surfaces

at 270 ns show the dense plasma around the wires (10−3 g cm
3

, dark grey) and plasma streams

(2.5 × 10−5 g cm
3

, light grey); velocity streamlines from one of the wires are shown with the

oppositely rotating flows separated visually by red and orange streamlines (the top 3 of which

represent the counter-rotating flow). The oppositely rotating flow is due to electrode’s effects and

it is dynamically unimportant. The azimuthally averaged poloidal magnetic field lines are shown

in blue [2]

the flow is accomplished by slightly twisting the wires in the azimuthal direction.

This results in a poloidal magnetic field and an azimuthal component of the Lorentz

force, giving a nonzero torque on the plasma streams (Fig. 4). The level of angular

momentum introduced in the system can be controlled by changing the twist angle

and in general the jets ejected have rotation velocities ∼ 100–200 km s−1, corre-

sponding to ∼ 0.1–0.2 of the jet propagation velocity. One of the applications of

these proof-of-principle experiments will be to study the effects of rotation on the

propagation of jets and on the growth of the Rayleigh–Taylor instability in curved

jets (see Sect. 4.3)

4.2 Magnetohydrodynamic Jets

Protostellar (and galactic jets) are thought to be powered by the combination of

rotation and magnetic fields, which extract the rotational energy from an accreting

system and create magnetic stresses which accelerate and collimate the flow (see

the lectures notes [23, 53]. Depending on the details of the models, the winding of
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an initially poloidal magnetic field results in a flow pattern dominated by a toroidal

field. A similar situation is also attained when the foot-points of a field line, connect-

ing the disc to a central compact object or connecting different parts of a disc, rotate

with different angular velocities. In such cases, the relative angular displacement of

the foot-points causes one of them to move ahead of the other and the field loop

to twist. The induced toroidal component results in an increase of the magnetic

pressure which drives the expansion of the loop itself [34]. In the magnetic tower

scenario [37, 36], the outcome is a magnetic cavity consisting of a highly wound-up

toroidal field which accelerates the flow. In this case, the presence of an external

plasma medium was shown to be necessary to confine the magnetic cavity, which

would otherwise splay out to infinity within a few rotations [35]. The basic picture

of magnetic tower evolution has also been confirmed numerically by several authors

[28, 29, 41, 42, 39].

4.2.1 Magnetically Driven Jets from Radial Wire Arrays

The study of magnetically collimated and accelerated jets on z-pinches was devel-

oped in the last few years [9, 33, 11, 12] using a modified wire array configuration.

The basic astrophysical mechanism studied in the experiments is the interaction of

a toroidal magnetic field with a plasma ambient medium, leading to the formation

of jets and magnetic ‘bubbles’. The schematic of the experimental set-up, a radial

wire array, is shown in Fig. 5. The formation of plasma is similar to that discussed

in conical wire arrays, however, the plasma is now accelerated vertically filling the

space (few centimetres) above the array. Below the wires there is only a toroidal

magnetic field. The formation of the jet and its time evolution is shown in Fig. 6.

The initial formation of the magnetic cavity and jet occurs at the time when the

magnetic pressure is large enough to break through the wires. This occurs only

over a small region close to the central electrode, where the toroidal magnetic field

BG is strongest. The results show the system evolving into a structure consisting

of an approximately cylindrical magnetic cavity with an embedded jet on its axis

Fig. 5 Schematic of a radial wire array
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Fig. 6 Slices of mass density from a 3D MHD simulation of radial wire arrays. The evolution is

shown at times (a) 165 ns, (b) 175 ns, (c) 185 ns and (d) 205 ns. The logarithmic density scale is

from 10−7 g cm
3

(blue or light grey in the black and white version) to 10−1 g cm
3

(red or dark

grey in the black and white version). Regions in white are void of plasma, but not electromagnetic

fields, and are essentially a computational ‘vacuum’. The square, black regions are the electrodes

[11]
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Fig. 7 (a) Magnetic field lines (yellow or light grey in the black and white version) and current

density (red or dark grey in the black and white version) distribution inside the magnetic cavity at

245 ns [11]. To show the inside of the magnetic cavity the isodensity contours (shades of blue or

grey in the black and white version) are sliced vertically. With the onset of the kink instability the

magnetic field wraps tightly around the jet, which is seen more clearly in (b) without the cavity

walls [12]. (c) Experimental shadowgraph showing the bubble wall and the clumpy jet launched

along the axis [33]

confined by the magnetic ‘pinching’ force. A shell of swept-up plasma surrounds

and partially confines the magnetic bubble. The subsequent evolution is dominated

by current-driven instabilities and the development of the asymmetric ‘kink’ mode

(m = 1) which leads to a distortion of the jet and a re-arrangement of the mag-

netic field. In Fig. 7a, the magnetic field lines can be seen to twist inside the jet,

an effect caused by the instability which turns toroidal into poloidal magnetic flux.

The end result of the instabilities, however, is not to destroy the jet, but to produce

an inhomogeneous or ‘knotty’ jet, shown in Fig. 7b, c. The resulting jet has typical

super-fast magnetosonic Mach numbers in excess of 5, it is kinetically dominated

and its opening angle <20◦.

The relatively simple initial conditions implemented experimentally produce a

very complex and rich dynamics which share many important features with astro-

physical models. One important example is the presence of an envelope surrounding

the magnetic cavity and confining it. Although this is discussed in the astrophysi-

cal literature [37, 54], it has so far only been observed in a laboratory experiment.

The stability and dynamics of the envelope, which determine the collimation of

the cavity itself, can thus be directly studied in the laboratory before astronomical

observations may become available. Finally, it is worth pointing out that while 2D,

axisymmetric MHD simulations reproduce very well the experimental results, up to

the development of the nonasymmetric current-driven instabilities. There are fun-

damental differences in the long-term evolution of the system, which can only be

reproduced by fully 3D simulations.

4.2.2 Episodic Ejection of Magnetic Bubbles and Jets

Protostellar jets are characterized by the presence of knots and multiple bow-shocks,

tracing their propagation [25]. These are often interpreted as internal shocks driven

by relatively small perturbations in a steady ejection process, and which occur on
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typical timescale between ∼ 5 and 20 years. For example in [18] it was shown that

the temporal variability of the jet velocity may be associated with a time-varying

stellar magnetic field. Episodic jet ejection behaviour may also be associated with

variation in the accretion rates or an inflating stellar magnetosphere.

Recent experiments have studied for the first time the episodic ejection of mag-

netic bubbles and jets, and its effects on the overall propagation of the outflow[13].

The experimental set-up is similar to that shown in Fig. 4; however, the wires are

replaced by a 6-µm thick metallic foil (usually aluminium). A 3D MHD simulation

of the experiments is shown in Fig. 8. The evolution of the first bubble is similar to

that of radial wire arrays. However, the total mass in the plasma source, as a function

of radius, is larger for a foil than for a radial wire array. Thus after the first magnetic

cavity and jet are formed, there is a larger quantity of plasma available to refill the

‘gap’ between the central electrode and the left-over foil; the presence of this gap

is visible for example in Fig. 5 for radial arrays, and it is produced by the magnetic

field pressure breaking through the wires (or foil). Once the gap is refilled with

plasma, the currents can flow once again across the base of the magnetic cavity, thus

re-establishing the initial configuration. When the magnetic pressure is large enough

to break through this newly deposited mass, a new jet/bubble ejection cycle can

begin. Typical flow velocities observed are ∼ 100–400 km s−1, the simulated sonic

and the alfvénic Mach numbers in the jet, defined as the ratios of the flow speed

to the sound and Alfvén speed, respectively, are Ms ∼ MA ∼ 3–10. The resulting

flow is heterogeneous and clumpy, and it is injected into a long lasting and well-

collimated channel made of nested cavities. Each jet/outflow episode propagates,

interacts and substantially alters the surrounding environment by injecting mass,

momentum, energy and magnetic flux into it. An important aspect of the episodic

ejection process is, broadly speaking, its self-collimation. Since the initial ambi-

ent medium is swept away after a few ejections, newly formed magnetic cavities

are confined solely by the environment left by earlier episodes, thus making the

collimation process insensitive to the initial ambient conditions. An experimental

Fig. 8 Three-dimensional MHD simulation of a radial foil experiment. The images show the line-

of-sight integrated emission (in arbitrary units) at different times. The red line (black in the black

and white version) in the first panel shows the position of the electrodes
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Fig. 9 Experimental image showing the presence of nested magnetic cavities with an embedded

jet. The image shows the self-emission in the XUV range [13]

image of the evolution of the system is shown in Fig. 9 In the magnetic cavities

ReM > 100, and each bubble expands with its own ‘frozen-in’ magnetic flux; in the

experiments this is confirmed by the magnetic probe measurements of the trapped

magnetic field at the outer edge of the bubbles, B ∼ 1–5 kG. The collimation is then

determined not only by the pressure of the left-over plasma but also by the pressure

of the tangled magnetic field trapped in the bubbles, where the plasma-β is in the

range 0.1 < β < 1. A high level of symmetry is maintained after many ejections

(5 in the current experiments), the number being limited only by the duration of the

current pulse delivered by the generator. Overall, the experiments demonstrate that

magnetic acceleration and collimation, occurring within a framework of strongly

episodic outflow activity, can be effective in producing well-collimated and hetero-

geneous jets.

By drawing a parallel with the dynamics observed in the experiments, one can

gain useful insights and a qualitative view of the possible evolution of astrophysi-

cal jets. In the experiments there are two timescales which determine the magnetic

bubbles/jets development: the current-driven (CD) instability timescale τI and the

episodic bubble ejection timescale τB. For conditions applicable to the formation

region of protostellar jets [26], we can estimate the growth time of the CD kink

mode as the Alfvén crossing time τI ∼ 1 year; corresponding to a few nanoseconds

in the experiments. The second timescale is linked to the temporal variability of the

Poynting flux feeding the bubbles, and for astrophysical sources τB should be asso-

ciated with a substantial variation in the outflow launching activity; observations
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of knots kinematics suggest characteristic times τB ∼ 5–20 years; the experiments

are in a similar regime of τB/τI . Because both timescales are relatively longer than

the characteristic Keplerian period of rotation at the inner disk radius, jet launching

should have ample time to reach steady state. The characteristic astrophysical flow

velocities can be taken to be v ∼ 200 km s−1. With these conditions, the pres-

ence of multiple bubble-like features should be observed on scales ranging from

a few tens to a few hundreds of AU from the source. Indeed ejection variability,

limb-brightened bubble-like structures and the presence of wiggles in the optical

DG Tau jet are evident on scales ranging from of a few tens to a few hundreds of

AU the source [4, 19]. The experiments also indicate that asymmetries in the flow

can be produced by instabilities that do not destroy the collimation, and because

of their relatively short growth time, jets should develop nonaxisymmetric features

already within a few tens of AU from the source and become more heterogeneous

and clumpy as they move further away to hundreds of AU. It was recently reported

for a number of TTauri jets, including DG Tau, that already within 100 AU from the

source the jet’s physical conditions show considerable asymmetries with respect to

the axis [14]. Finally over the same length scales the experiments suggest magnetic

energy dissipation, heating of the plasma and a transition to a kinetically dominated

jet which propagates ballistically. X-ray emission from the DG Tau jet was recently

detected on the same length scales and it was proposed that magnetic energy dissipa-

tion may be behind the heating mechanism [24]. As in the experiments, instabilities

and the tangling of the magnetic field may provide a compelling route to efficient

heating of such plasmas.

4.3 Interaction with the Interstellar Medium

4.3.1 Curved Jets

A number of bipolar Herbig-Haro (HH) jets exhibit a distinguishing C-shape mor-

phology indicative of a steady bending [5]. Less regular curvature is also observed

in a number of other HH jets; for example, in HH 30 a small side drift close to the jet

source is followed further away by a sudden bending [3]. In general, the curvature in

jets has been linked either with the motion of the jet sources relative to the ambient

medium or with the presence of a widespread outflow; both cases giving rise to

an effective transverse ram pressure (cross-wind) which curves the jet. Expected

wind velocities vary from a few kilometres per second for the jet–wind interac-

tion associated with relative motions of TTauri stars with respect to the surrounding

environment (see, for example, [27]) to typically higher velocities for irradiated jets,

where best fits to HH505 Hα emission maps were obtained for a wind velocity of

15 km s−1 [38] and estimates in [5] give wind velocities in the Orion nebula and in

NGC1333 of ∼ 10–20 km s−1.

The hydrodynamic laboratory jets described in Sect. 4.1 are ideally suited to

study the interaction with an ambient medium. The region into which the jet is

launched (cf. Fig. 3) is a large vacuum that can be easily filled with different types
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Fig. 10 (a) Experimental time-resolved XUV image of a curved jet. (b) Synthetic XUV image

of a curved laboratory jet from a 3D simulation. (c) Column density from a 3D simulation of an

astrophysical jet [8]

of background gases. To investigate the dynamics of curved HH jets, a cross-wind

was produced by a radiatively ablated foil appropriately placed in the jet propaga-

tion region [1, 32, 30]. Typical wind velocities ∼ 30–50 km s−1 can be produced

in the laboratory, with the important parameters characterizing the interaction in

the range Vjet/Vwind ∼ 2–4 and njet/nwind ∼ 0.1–10. Figure 10 shows an example

of the experiments and simulations of curved jets [8]. The characteristic dynamics

of the interaction is similar for the laboratory and astrophysical systems, showing

notably the formation of new working surface in the jet and ‘knotty’ structure in

the flow. Curved jets are also Rayleigh–Taylor (RT) unstable, with the growth of

such mode disrupting their propagation. However, it was shown that jet rotation

may partially suppress the instability by shearing the RT modes and confining the

perturbations to a narrower layer of the jet body. Nevertheless this promotes the

development of the Kelvin–Helmholtz instability (at least for the subsonically rotat-

ing jets) which is later responsible for disrupting the jet. Experimentally the RT

growth time is of the order of the dynamical time over which the interaction can be

produced and new, longer timescale experiments will be needed to observe its full

development.

4.3.2 Clump Propagation

We now return to the scaling issue of some of the laboratory flows and in particular

the MHD jets. As we have seen their evolution is dominated by current-driven insta-

bilities, and the resulting flow is inherently time dependent and inhomogeneous. To

study the propagation of such flows in an astrophysical setting, the data obtained

from laboratory MHD jet simulations can be scaled up and used as initial conditions

to model astrophysical clumpy jets. There is clearly some arbitrariness on the choice

of some of the scaling parameters and for the case presented here we assume the

flow to be close to the YSO source. Noting that the laboratory and astrophysical jet

velocities are of the same order, we choose the following three scaling: Vlab = Vastro,
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L lab = 1 mm → Lastro = 10 AU and ρlab = 10−3 g cm−3 → ρastro = 10−18 g

cm−3. The choice of scale length gives an initial jet radius ∼20–30 AU and we take

the maximum jet density in the laboratory to scale to a maximum astrophysical jet

density of ∼106 cm−3. The constraints on the scaling discussed in Sect. 3 give 1 ns

→ 0.05 years, 50 eV → 3000 K and 50 T → 15 mG. The specific scaling applied

Fig. 11 Propagation of an episodic protostellar jet showing the break-up into small and large

clumps
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in this case implies that the experimental flow, which lasts ∼200 ns, corresponds

to an astrophysical outflow lasting ∼10 years. Such short times, when compared to

the lifetimes of tens of thousands of years for protostellar outflows, may correspond

to the ejection of a single ‘clump’ as part of a more extended jet. The laboratory

jet profiles to be scaled up are taken at a time approximately corresponding to the

image in Fig. 7b. The simulated astrophysical jet was evolved with the inclusion of

cooling over ∼50 years on a Cartesian grid of 400 × 106 cells with a resolution of 2

AU. In these simulations the magnetic field is not included, and for the regime mod-

elled here we would expect their inclusion to modify somewhat the dynamics. The

flow dynamics is shown Fig. 11. Initially the jet elongates because of the velocity

variations imparted by the current-driven instability. The stretching of the jet is then

followed by a rapid break-up into smaller clumps which move at different velocities.

The structure appearing in the large knot forming in the flow appears to be the result

of Rayleigh–Taylor instabilities. In general, a single dense clump is produced by an

ejection event like this, with the resulting outflow remaining well collimated over

the propagation across ∼3000 AU.

5 Summary

Progress in high-energy density plasma experiments on lasers and z-pinch facilities

has permitted in the last 10 years to start investigating a range of ‘large-scale’ astro-

physical phenomena in the laboratory, extending the traditional domain of labora-

tory astrophysics beyond the work on micro-physics. Through careful design of the

experiments, the plasma produced can be scaled to the astrophysical environment,

allowing complex, intrinsically nonlinear, 3D phenomena to be accessed in a con-

trolled manner. An important outcome being the validation of astrophysical codes

on the laboratory data. Although work on astrophysical jets has been performed on

both lasers and z-pinch facilities, we have focused here only on the studies of jets

produced on the MAGPIE z-pinch facility. Two main ‘types’ of jets were developed:

hydrodynamic jets, to be used for propagation studies, and magnetohydrodynamic

jets of interest to the launching phase. In general, there is some considerable control

on the experiments: the initial condition can be partially modified, for example, the

density and magnetic field distributions; more complex physics, such as rotation,

can be added and different plasma condition can be produced by modifying, for

example, the cooling rates. Overall the combination of laboratory experiments and

simulations can provide some very important insights on the physics of astrophysics,

and as technology advances we can expect evermore exotic phenomena to be repro-

duced in the laboratory.
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Output from MHD Models

Nektarios Vlahakis

Abstract Outflows emanating from the environment of stellar or galactic objects

are a widespread phenomenon in astrophysics. Their morphology ranges from

nearly spherically symmetric winds to highly collimated jets. In some cases, e.g., in

jets associated with young stellar objects, the bulk outflow speeds are nonrelativis-

tic, while in others, e.g., in jets associated with active galactic nuclei or gamma-ray

bursts, it can even be highly relativistic. The main driving mechanism of collimated

outflows is likely related to magnetic fields. These fields are able to tap the rotational

energy of the compact object or disk, accelerate, and collimate matter ejecta. To

zeroth order these outflows can be described by the highly intractable theory of

magnetohydrodynamics (MHD). Even in systems where the assumptions of zero

resistivity (ideal MHD), steady state, axisymmetry, one fluid description, and poly-

tropic equation of state are applicable, the problem remains difficult. In this case

the problem reduces to only two equations, corresponding to the two components

of the momentum equation along the flow and in the direction perpendicular to the

magnetic field (transfield direction). The latter equation is the most difficult to solve,

but also the most important. It answers the question on the degree of the collimation,

but also crucially affects the solution of the first, the acceleration efficiency and the

bulk velocity of the flow. The first and second parts of this chapter refer to nonrel-

ativistic and relativistic flows, respectively. These parts can be read independently.

In each one, the governing equations are presented and discussed, focusing on the

case of flows that are magnetically dominated near the central source. The general

characteristics of the solutions in relation to the acceleration and collimation mech-

anisms are analyzed. As specific examples of exact solutions of the full system of

the MHD equations that satisfy all the analyzed general characteristics, self-similar

models are presented.
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1 Steady, Axisymmetric, Nonrelativistic, Magnetized Outflows

A magnetized flow can be described by

• The density of the flow ρ. We assume that the plasma consists of positive and

negative charges with masses per particle m+ and m− and number densities n+
and n−, respectively.1 The mass density is then ρ = n+m+ + n−m−. The charge

density is ρq = n+q+ + n−q−, where q+ and q− are the positive and negative

charges (in most astrophysical cases q+ = e, q− = −e). Note that the plasma is

assumed quasi-neutral, meaning that (n+ − n−)/(n+ + n−) ≪ 1, but not exactly

neutral. The charge density ρq is connected to the appearance of the electric field

through Gauss’ law (the electric field is small in the nonrelativistic case, as will

be explained later, but in general nonzero).

• The flow velocity V is the velocity of the center of mass. If V + and V − are the

velocities of the positively and negatively charged particles, respectively, then

V = (n+m+V ++n−m−V −)/(n+m++n−m−). This is the so-called bulk velocity

of the fluid and should not be confused with the random motion of particles in the

comoving frame (the frame in which the momentum of the flow vanishes; note

that a different comoving frame is defined at each point of the flow). The random

motion of particles is connected to the thermodynamic quantities, internal energy,

temperature, and pressure. In reality the positive and negative charges move with

slightly different velocities V + and V −. Both are very close to the velocity of the

center of mass V . The difference between the velocities of positive and negative

charges is connected to the current density J = n+q+V + + n−q−V −, which,

in principle, is nonzero (its value is connected to the magnetic field through

Ampère’s law).

• The magnetic field B and the electric field E, as we measure them in the frame

of the central object. This frame is also called the laboratory frame.

• The current density J and the charge density ρq , as we measure them in the

laboratory frame.

• The thermodynamic quantities pressure P , internal energy per mass e, and tem-

perature T (these are defined in the comoving frame). The temperature is a

given function of density and pressure kBT = P/(n+ + n−) (we assume one-

temperature flow). For example, in electron–proton plasma where n− ≈ n+ and

ρ ≈ n+mp, we get kBT = (mp/2)(P/ρ). For electron–positron plasma where

n− ≈ n+ and ρ ≈ 2n+me we get kBT = me(P/ρ).

The above quantities are connected through equations that we describe next.

1 A generalization in the case of different types of positive/negative charges is straightforward.

However, the present analysis does not cover the cases where neutrals are also present in the flow

and have significantly different velocities compared to the charged components.
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1.1 Governing Equations

1.1.1 Maxwell Equations

The electric and magnetic fields are connected to the charge and current densities

through Gauss law

ρq =
1

4π
∇ · E , (1)

and Ampère’s law

J =
c

4π
∇ × B −

1

4π

∂ E

∂t
. (2)

The previous two equations can be seen as the ones that give the charge and

current densities as functions of (B, E).

When we discuss the relation between fields (B, E) and charge and current den-

sities (ρq , J), it is always correct to say that the (B, E) coexist with (ρq , J), in a

way that the Gauss and Ampère laws are satisfied. However, it is not correct to say

that (ρq , J) create the fields (B , E). If we want to answer the question of what

creates the other, it is better to say the opposite. There is a large number of charges

in the plasma and the appearance of the fields moves them in a way such as to

create the necessary charge and current densities (ρq , J) through small deviations

in number densities (n+−n−) and velocities (V +−V −). Note also that a problem of

a magnetohydrodynamic outflow in astrophysics is a boundary-value problem. The

electromagnetic field inside the flow should satisfy the given boundary conditions.

Thus, it is better to work with fields rather than with charge and current densi-

ties. The use of the current density help us to better understand some mechanisms,

though. Examples are the acceleration and the collimation in astrophysical jets, as

will be explained later.

The (B, E) fields should also obey the homogeneous Maxwell’s equations,

namely the solenoidal condition

∇ · B = 0 (3)

(which means that no magnetic monopoles can exist) and the Faraday’s equation

∇ × E +
1

c

∂ B

∂t
= 0 . (4)

1.1.2 Ohm’s Law

Ohm’s law, in its simplest form, connects the charge density with the electric field

through the resistivity Eco = ρc J co, where Eco is the electric field and J co the

current density measured in the comoving frame. In most cases of astrophysical
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interest, the resistivity is very low, allowing to replace the above equation with

Eco = 0. This is a consequence of the ability of charges to move fast and screen

every induced electric field, leading to the condition that no electric field can exist

in the comoving frame. Using Lorentz transformations of the electromagnetic field2

we find the following relation between the electric and the magnetic fields in the

laboratory frame

E = −
V

c
× B . (5)

It is evident that for nonrelativistic flows E ≪ B, and for this reason we neglect

all the effects of the electric field when we compare them with analogous effects

of the magnetic field. For example, we neglect the displacement current in Eq. (2).

Also we neglect the electric force in the momentum equation as we will see later.

1.1.3 Mass Conservation

Assume a constant volume δτ in space, bounded by the closed surface S. If δm

is the mass inside this volume, then −d(δm)/dt = −∂(δm)/∂t is the rate at

which the mass inside the volume δτ decreases with time. Due to mass conser-

vation, this rate equals to the mass flow rate that passes the surface S, which is�
(n+m+V + + n−m−V −) · d S =

�
ρV · d S =

�
∇ · (ρV )dτ . By writing

δm =
�

ρdτ and equating the two expressions we find the so-called continuity

equation

∂ρ

∂t
+ ∇ · (ρV ) = 0 . (6)

1.1.4 Momentum Equation

The various force densities that act on the fluid are

• pressure gradient −∇ P ,

• electric force per volume (n+q+ + n−q−) E = ρq E,

• magnetic force per volume (n+q+V +/c + n−q−V −/c) × B = (1/c) J × B,

• gravitational force density −ρ∇Φg which becomes −ρ
(

GM/r2
)

r̂ in the case

of a central mass M (r is the spherical distance from the central mass and r̂ the

corresponding unit vector).

The sum of these force densities equals the inertial force density ρdV/dt =
ρ(∂/∂t + V · ∇)V , giving the following momentum equation (after substituting J

from Ampère’s law and dropping the electric field terms which are negligible, since

E ≪ B as explained in Sect. 1.1.2):

2 Eco = γ
(

E + V
c

× B
)

− (γ − 1)
(

E · V
V

)
V
V

, where γ the Lorentz factor γ =
(

1 − V 2/c2
)−1/2

.
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ρ

(
∂

∂t
+ V · ∇

)

V = −∇ P +
(∇ × B) × B

4π
− ρ

GM

r2
r̂ . (7)

Note that the change in any quantity of the fluid is due to two factors: (1) the

possible direct dependence on time and (2) the fluid motion. Mathematically this is

expressed as

d

dt
=

∂

∂t
+ V · ∇

and can be seen as the property for any function Φ of (t, r)

dΦ(t, r)

dt
= lim

Δt→0

Φ(t + Δt, r + VΔt) − Φ(t, r)

Δt
=

∂Φ

∂t
+ V · ∇Φ .

1.1.5 Thermodynamic Relations

The temperature of an ideal gas, isotropic in its rest frame, is a known function of

the pressure and density given by

kBT =
P

n+ + n−
=

P

ρ/m
, (8)

where m is the mean mass per particle (e.g., m = m p/2 for electron–proton plasma

and m = me for electron–positron plasma).

According to the kinetic theory of gases, in a gas with f degrees of freedom

( f = 3 for monatomic gas), the internal energy per particle is ( f/2)kBT . Thus,

the internal energy per mass is e = ( f/2)(P/ρ). Defining the polytropic index as

Γ = 1 + 2/ f we can write

e =
1

Γ − 1

P

ρ
. (9)

The previous holds for nonrelativistic thermal motions in which the random

motion of particles in the comoving frame is nonrelativistic, or, in other words,

when mc2 ≫ kBT holds.3

Another useful thermodynamic quantity is the enthalpy. Since it is defined as the

sum of the internal energy plus the product pressure times volume, the enthalpy per

mass is

3 The other limit, kBT ≫ mc2, is in principle possible in relativistic MHD flows. In that case, the

energy of a particle is proportional to its momentum
√

p2c2 + m2c2 ≈ pc, and thus, the particles

behave as a photon fluid with energy density 3P . This translates to energy per mass e = 3P/ρ,

again a relation of the form (9), with Γ = 4/3. (This value of Γ is not related to degrees of

freedom.)
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h = e +
P

ρ
=

Γ

Γ − 1

P

ρ
. (10)

1.1.6 The First Law of Thermodynamics

A mass δm of gas has a volume δm/ρ. The expansion of the mass is connected

to the production of work Pd(δm/ρ). This mass can be heated or cooled. If q is

the volumetric rate of net energy input/output, then energy q(δm/ρ)dt is added

or subtracted (when q > 0 the mass is heated, while q < 0 means that the sys-

tem is cooled). The first law of thermodynamics describes the energy conservation

d(eδm) = q(δm/ρ)dt − Pd(δm/ρ). Thus, we can write

de

dt
+ P

d(1/ρ)

dt
=

q

ρ
, or,

dh

dt
−

1

ρ

d P

dt
=

q

ρ
. (11)

Using Eq. (9) we find

d

dt

(
1

Γ − 1

P

ρ

)

+ P
d(1/ρ)

dt
=

q

ρ
, or,

ρΓ

Γ − 1

d

dt

(
P

ρΓ

)

= q , (12)

a relation which provides a connection with the entropy. In adiabatic flows (q = 0),

the above equation yields the conservation of specific entropy (P/ρΓ = constant at

each fluid parcel).

The first law of thermodynamics applies only for reversible processes and not,

for example, in the presence of shocks. As will become clear later, it is equivalent

to the energy equation in conservative form. The latter implies Eq. (11) only if all

the involved quantities are differentiable, i.e., in the absence of shocks.

Polytropic flows

In cases where the analysis is focused on the flow dynamics (rather than on the

energetics) and/or the heating/cooling mechanisms are poorly known or technically

difficult to be described, the polytropic assumption is often used. The idea is to

mimic the heating/colling process with an adiabatic evolution. This can be done by

rearranging Eq. (12) to a similar equation for an adiabatic flow, but with an effective

polytropic index Γeff. Equivalently, the function q can be modeled as

q =
Γ − Γeff

Γ − 1
ρ P

d(1/ρ)

dt
=

Γ − Γeff

Γ − 1
P∇ · V , (13)

and Eq. (12) can be simplified to

d

dt

(
1

Γeff − 1

P

ρ

)

+ P
d(1/ρ)

dt
= 0 , or,

d

dt

(
P

ρΓeff

)

= 0 , (14)

which gives the integral of the effective specific entropy P/ρΓeff = constant at each

fluid parcel. In other words, the evolution of a gas with 2/(Γ −1) degrees of freedom
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and nonzero heating is modeled as the adiabatic evolution of a gas with 2/(Γeff − 1)

degrees of freedom (with Γeff < Γ ). The external heating is in essence replaced by

the energy that is stored initially in the additional degrees of freedom and released

as the flow expands. Similarly, a cooled flow can be modeled with an effective poly-

tropic index Γeff > Γ .

Note that the effective specific entropy P/ρΓeff which is constant at each fluid

parcel is not necessarily a global constant. Instead, it may take different values for

different parcels of the flow. The same applies to the P/ρΓ in adiabatic flows, which

can be seen as subcases of polytropic flows corresponding to Γeff = Γ .

Nonpolytropic flows

An alternative way of modeling magnetized outflows is the so-called nonpolytropic

approach (see Sauty et al. [46] and references therein). The idea is to simply ignore

the energy equation, ignore all the thermodynamic quantities,4 and find solutions

for the flow speed, density, and magnetic field that are consistent with the rest of

the MHD equations. Hence, in such a treatment the heating sources that produce

some specific solution are not known a priori; instead, they can be determined only

a posteriori, by calculating q from Eq. (12). This method has the advantage of being

more general compared to the polytropic approach, since the latter corresponds to

a special functional relation of q with the density and pressure. However, it has the

disadvantage of not allowing to control the energetics, since these can be examined

only a posteriori. This means that the heating/cooling required by a solution may be

unreasonable making the solution unphysical. Nevertheless, nonpolytropic solutions

with reasonable heating/cooling are perfectly acceptable and are by no means worse

than the polytropic solutions.

1.1.7 Conservative Forms

In a conservative equation of the form (∂/∂t)D+
(

∂/∂x j

)

F j = S, written for some

quantity, we can identify the density of this quantity D, the corresponding flux F j ,

and possible source terms S. For example, the continuity Eq. (6) is the conservative

form for the mass, with ρ being the mass density and ρV j being the mass flux (no

source terms appear since the mass is conserved).

We can also write conservative equations for the momentum and energy. In fact

these are the equations that are found from first principles (either using the stress-

energy tensor as we do in the description of relativistic flows, see Sect. 2.1, or if we

use the kinetic theory). These equations yield Eqs. (7) and (12) in the case where

shocks are not present.

The conservative form of the momentum equation is
(

in Cartesian coordinates
[

x j , j = 1, 2, 3
]
)

4 The pressure enters the momentum equation through the ∇ P term, but this can be eliminated by

taking the ∇× of that equation.
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∂

∂t

(

ρV +
E × B

4πc

)

+
3
∑

i, j=1

∂

∂x j

(

ρVi V j + Pδi j +
B2 + E2

8π
δi j −

Bi B j + Ei E j

4π

)

x̂i

= −ρ
GM

r2
r̂ . (15)

We identify the momentum density for the fluid ρV and the electromagnetic field

E×B/4πc, the flux of ‘i’ momentum through the ‘ j’ direction for the fluid ρVi V j +
Pδi j and the electromagnetic field

(

B2 + E2
)

δi j/8π−
(

Bi B j + Ei E j

)

/4π , and the

source term −ρGMr̂/r2 due to the gravitational field.

The conservative form of the energy equation is

∂

∂t

(
1

2
ρV 2 +

1

Γ − 1
P +

B2 + E2

8π

)

+∇ ·
(

1

2
ρV 2V +

Γ

Γ − 1
PV +

c

4π
E × B

)

= q − ρ
GM

r2
r̂ · V . (16)

Since −ρV ·∇Φg = −∂(ρΦg)/∂t −∇ ·(ρΦgV ), we can include the gravitational

term of the right-hand side inside the energy density and flux and write

∂

∂t

(
1

2
ρV 2 +

1

Γ − 1
P +

B2 + E2

8π
− ρ

GM

r

)

+∇ ·
(

1

2
ρV 2V +

Γ

Γ − 1
PV +

c

4π
E × B − ρ

GM

r
V

)

= q . (17)

Thus, the energy density is the sum of the corresponding kinetic energy part

ρV 2/2, the internal energy part P/(Γ −1), the electromagnetic part
(

B2 + E2
)

/8π ,

and the gravitational energy density ρΦg. The terms inside the total energy flux

correspond to the kinetic energy part
(

ρV 2/2
)

V , the enthalpy flux [Γ/(Γ −1)]PV ,

the Poynting flux (c/4π )E × B, and the gravity term ρΦgV .

It is straightforward to prove that if we multiply Eq. (15) with V and then subtract

it from Eq. (16), we arrive at the expression (12) for the first law of thermodynamics.

One can also prove that in polytropic flows Eq. (16) becomes

∂

∂t

(
1

2
ρV 2 +

1

Γeff − 1
P +

B2 + E2

8π
− ρ

GM

r

)

+∇ ·
(

1

2
ρV 2V +

Γeff

Γeff − 1
PV +

c

4π
E × B − ρ

GM

r
V

)

= 0 , (18)



Output from MHD Models 59

i.e., takes the form of the energy equation for an adiabatic evolution of a gas with

polytropic index Γeff.
5

1.2 Integrals of Motion

Since the outflows that we examine originate from the environment of rotating

objects (central masses or disks), axisymmetry is a reasonable assumption. In spher-

ical (r, θ, φ) or cylindrical (z,̟, φ) coordinates, with the z-axis the axis of rotation,

∂/∂φ = 0 holds. In addition, steady-state ∂/∂t = 0 is also assumed, meaning that

the flows do not change much on the timescales of interest. Thus, all the unknown

functions of the problem depend on a pair of variables (z,̟ ) or (r, θ ) depending on

the choice of coordinates.

These assumptions make the partial integration of most equations possible. The

resulting integrals give important information on the characteristics of outflows as

will become clear in the following.

We will analyze polytropic flows, but the analysis can be easily generalized to

cover nonpolytropic flows as well, as we discuss later.

1.2.1 The Magnetic Flux Function

The most important unknown of the problem is the magnetic flux function A. We

define the plane (z,̟ ) in cylindrical (or [r, θ ] in spherical) coordinates as the

poloidal plane, see Fig. 1, and split all vectors in poloidal and azimuthal com-

ponents. The velocity has a poloidal V p and an azimuthal V φ part. Similarly, the

magnetic field is decomposed to Bp and Bφ .

The Maxwells’ equation ∇ · B = 0 can be simplified to ∇ · Bp = 0 (since ∇ · Bφ

is identically 0 due to axisymmetry). So, there is a function A(̟, z) such that

Bp =
∇ A × φ̂

̟
or Bp = ∇ ×

(

A φ̂

̟

)

. (19)

Obviously the function A is related to the vector potential of the poloidal mag-

netic field. Its name comes from the relation with the magnetic flux

A =
1

2π

�
Bp · d S . (20)

5 Note that the polytropic assumption introduces the following error in the presence of shocks.

The polytropic assumption is based on the replacement of the heating function q with the form

given in Eq. (13). This expression gives a delta function at the position of the shock where the

velocity is discontinuous, introducing an artificial cooling if Γeff < Γ (or artificial heating for

Γeff > Γ ). This has important consequences, e.g., the compression ratio of a strong shock is now

(Γeff + 1) / (Γeff − 1) instead of the correct value (Γ + 1)/(Γ − 1).
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Fig. 1 Sketch of a streamline

(dashed line) and a field line

(solid line). The projection of

both lines on the poloidal

plane (shadowed plane)

coincide. The equation of this

line is A = constant

r

ϖ

z

θ

p

ẑ

y

x̂

^

B
ϕ

B
B

Thus, the equation of the poloidal magnetic field line (which is the projection of

the magnetic field line on the poloidal plane) is A = constant, see Fig. 1.

1.2.2 The Field Angular Velocity

Faraday’s equation, in the case of steady magnetic field, gives that the electric field

comes from a scalar potential E = −∇ΦE. Due to the axisymmetry, Eφ = 0. In

that case, Ohm’s law (5) gives (V × B) · φ̂ = 0 ⇔
(

V p × Bp

)

· φ̂ = 0, meaning that

the V p and Bp are parallel. Thus, the plasma flow on the poloidal plane follows the

magnetic field, or, the magnetic field is frozen into the plasma. The 3D streamline

and field line do not in general coincide, though, as seen in Fig. 1.

Since V p and Bp are parallel, there are functions ΨA and Ω such that

V =
ΨA

4πρ
B + ̟Ωφ̂ ,

ΨA

4πρ
=

Vp

Bp

. (21)

Substituting the previous relation in Ohm’s law (5) we get E = −(̟Ω/c)φ̂ ×
Bp. Using Eq. (19) we find that the electric field is

E = −
Ω

c
∇ A , with magnitude E =

̟Ω

c
Bp . (22)

E is normal to the poloidal magnetic field lines A = constant and points toward the

rotation axis, as seen in Fig. 2.

Using Eq. (22) Faraday’s law (4) gives ∇ × (Ω∇ A) = 0 ⇔ ∇Ω × ∇ A = 0.

Thus, Ω = Ω(A). In other words, Ω is a constant of motion, in other words it is an

integral. From field line to field line this function can in principle be different, but
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Fig. 2 Sketch of a poloidal

field/streamline A = constant

and the directions of the

various vector quantities

Bp

A

∆

B
φ

E

V
φ

Vp

since the plasma flows along field lines A = constant, Ω remains constant through

the motion of each fluid parcel.

If near the central object the density is relatively high, or, the poloidal field is

strong such that |ΨA Bp/4πρ| ≪ |̟Ω|, or, |Vp Bφ/Bp| ≪ |̟Ω|, Eq. (21) yields

that Vφ ≈ ̟Ω , meaning that Ω is the fluid angular velocity near the base of the

flow. At larger distances this no longer holds, as will become clear in the following.

In fact, the azimuthal velocity becomes smaller compared to the corotation value, a

result of rotation combined with the inertia of the field lines. If the roots of poloidal

magnetic field lines with Bz > 0 are rotating with Ω > 0 (i.e., in the +φ̂ direction),

the inertia of the field creates an azimuthal field component in the −φ̂ direction. If

the roots are rotating in the −φ̂ direction, or, the field has Bz < 0, a positive Bφ is

created. In the following we examine the case with Bz > 0 and Ω > 0, in which

Bφ < 0 (all other cases are straightforward generalizations).

1.2.3 The Mass-to-Magnetic Flux Ratio

Substituting Eq. (21) in the continuity Eq. (6), and since ∇ · B = 0, we get

Bp · ∇ΨA = 0. Thus, the derivative of ΨA along the poloidal field line is 0,

meaning that ΨA is a constant of motion, ΨA = ΨA(A). From Eq. (21), ΨA =
2
(

ρVpδS
)

/
(

BpδS/2π
)

. The denominator is the magnetic flux (see Eq. [20]), while

the nominator is the mass flux (counting both hemispheres). So, ΨA is the mass-to-

magnetic flux ratio, and it is a constant of motion (a consequence of the fact that

V p ‖ Bp).

1.2.4 The Adiabat

The integration of Eq. (14) gives another constant of motion, the adiabat

P

ρΓeff
= Q(A) . (23)
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1.2.5 The Angular Momentum-to-Mass Flux Ratio

As a consequence of the assumed axisymmetry, a constant of motion related to the

angular momentum should exist. Indeed, the φ̂ component of the momentum Eq. (7)

can be integrated 6 giving

̟ Vφ −
̟ Bφ

ΨA

= L(A) . (24)

The first term corresponds to the angular momentum-to-mass flux ratio for

the matter, while the second to the angular momentum of the electromagnetic

field over the mass flux. This becomes clear if we rewrite the second term as
(

−̟ Bp Bφ/4π
)

/
(

ρVp

)

, the ratio of the angular momentum flux of the

field −̟ Bp Bφ/4π over the mass flux ρVp. Only the sum of the two angular

momentum-to-mass flux ratios is constant along the flow; angular momentum can

be transfered from the field to the matter and vice versa. In fact both terms have

the same sign (since Bφ < 0 as explained earlier). We expect that for strongly

magnetized flows near the source the electromagnetic term is the dominant, while

at large distances a significant part has been transfered to the matter.

1.2.6 The Energy-to-Mass Flux Ratio

An integral related to the energy can be found if we project the momentum equation

along the flow, i.e., project Eq. (7) along V (or use the equivalent Eq. (18)). The

result is

1

2
V 2 +

Γeff

Γeff − 1

P

ρ
−

̟Ω Bφ

ΨA

−
GM

r
= E(A) , (25)

meaning that the total energy-to-mass flux ratio is a constant of motion. Note that

the third term is positive (since Bφ < 0) and is related to the electromagnetic

field. Indeed, the Poynting flux (c/4π )E × B can be split into two parts. The part

(c/4π )E × Bp is in the azimuthal direction and describes Poynting flux that cannot

escape. The part (c/4π )E × Bφ is in the direction of V p and points outward for

Bφ < 0. Its magnitude is (c/4π )E |Bφ|, or, using Eq. (22), (c/4π )(̟Ω/c)Bp|Bφ|.
Dividing with the mass flux ρVp and using that Vp/Bp = ΨA/4πρ (see Eq. (21)),

we find ̟Ω|Bφ|/ΨA, i.e., the term of the integral (25) corresponding to the elec-

tromagnetic field.

For strongly magnetized flows near the source we expect that the dominant part of

the energy integral is the electromagnetic term, while at larger distances the kinetic

energy term V 2/2 becomes important.

6 In the proof we use the identity (F · ∇)F = ∇
(

F2/2
)

+ (∇ × F) × F. We also use that for

any axisymmetric vector quantity F = Fp + Fφ φ̂, the φ̂ component of (∇ × F) × F equals
[

Fp · ∇
(

̟ Fφ

)]

(φ̂/̟ ).
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Note that in the general, nonpolytropic case, Eq. (17) gives

ρV p · ∇
(

1

2
V 2 +

Γ

Γ − 1

P

ρ
−

̟Ω Bφ

ΨA

−
GM

r

)

= q , (26)

resulting in the expression

1

2
V 2 +

Γ

Γ − 1

P

ρ
−

̟Ω Bφ

ΨA

−
GM

r
= E0(A) +

∫ ℓ

ℓ0

q

ρVp

dℓ , (27)

where ℓ is the arclength along each streamline (e.g., Sauty et al. [46]; Ferreira and

Casse [22]). The integral
∫ ℓ

ℓ0

(

q/ρVp

)

dℓ represents the heating added (or cooling

for q < 0) per unit mass between arclengths ℓ0 and ℓ, on a streamline A = constant.

1.3 The Use of the Integrals

Using the expressions for the integrals ΨA, Ω , and L (Eqs. (21), (24)), the Alfvénic

Mach number

M =
Vp

Bp/
√

4πρ
, (28)

and the function G defined as

G =
̟

̟A

, with ̟A =
(

L

Ω

)1/2

, (29)

we can express the MHD quantities as

ρ =
Ψ 2

A

4π M2
, (30)

B =
∇ A × φ̂

̟
−

LΨA

̟

1 − G2

1 − M2
φ̂ , (31)

V =
M2

ΨA

∇ A × φ̂

̟
+

L

̟

G2 − M2

1 − M2
φ̂ . (32)

In the case of a polytropic flow Eq. (23) gives

P = Q

(
Ψ2

A

4π

)Γeff
1

M2Γeff
. (33)
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Thus, all quantities are expressed in terms of the two remaining unknowns of

the problem, A and M . (Note that the integrals are regarded as given functions

of A, constrained by the boundary conditions of the outflow near its source.) The

two remaining equations that must be solved with respect to A and M are the two

components of the momentum equation on the poloidal plane, one along the flow

and the other in the transfield direction, i.e., along ∇ A.

The former can be simplified in the case of a polytropic flow, since it can be

replaced by the energy integral (25). This relation in turn can be rewritten as (using

Eqs. (30), (31), (32), and (33))

M4|∇ A|2

2Ψ 2
A̟ 2

+
L2

2̟ 2

(
G2 − M2

1 − M2

)2

+
Γeff

Γeff − 1
Q

(
Ψ 2

A

4π M2

)Γeff−1

+LΩ
1 − G2

1 − M2
−

GM

r
= E , (34)

an algebraic relation giving M as function of A and the magnitude of its gradient

|∇ A|.
The component of the momentum equation (7) in the transfield direction (along

∇ A) gives the so-called Grad–Shafranov, or transfield equation

(

1 − M2
)
[

̟
∂

∂̟

(
1

̟

∂ A

∂̟

)

+
∂2 A

∂z2

]

−
∂ A

∂̟

∂ M2

∂̟
−

∂ A

∂z

∂ M2

∂z

+
̟ 2Ψ 2

A

M2

dE

d A
−

L2Ψ 2
A

M2

G2 − M2

1 − M2

d ln L

d A
−

L2Ψ 2
AG2

M2

1 − G2

1 − M2

d ln Ω

d A

+

[

M2

(
∂ A

∂̟

)2

+ M2

(
∂ A

∂z

)2

+ L2Ψ 2
A

(
1 − G2

1 − M2

)2
]

d ln ΨA

d A
= 0 (35)

(e.g., Tsinganos [52]; Heyvaerts and Norman [27]; Heyvaerts [26]).

An alternative way of writing Eq. (35) is (after eliminating the derivatives of M2

using Eq. (34))

V 4
p − V 2

p

(

C2
s + V 2

A

)

+ C2
s V 2

Ap

V 4
p

∇2 A − ∇ A · ∇ ln |∇ A| =
F

1 − M2
, (36)

where F is a function of r , M , A, and first order derivatives of A. Here Cs ≡√
Γeff P/ρ is the effective sound speed, VAp ≡ Bp/

√
4πρ is the poloidal Alfvén

speed, and VA ≡ B/
√

4πρ is the total Alfvén speed. The Grad–Shafranov Eq. (36)

is a highly nonlinear, second-order partial differential equation for A, linear in

second-order derivatives. It is of mixed type, elliptic or hyperbolic depending on

if the quantity
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[

V 4
p − V 2

p

(

C2
s + V 2

A

)

+ C2
s V 2

Ap

] [

V 2
p

(

C2
s + V 2

A

)

− C2
s V 2

Ap

]

is negative or positive, respectively (for details see e.g., Tsinganos et al. [54];

Vlahakis [56]).

1.3.1 The Alfvénic Surface

An important surface in magnetized outflows is the Alfvénic surface, defined as the

locus of points where M = 1. It is expected that near the source the poloidal mag-

netic field is strong, corresponding to M < 1, while at large distances M > 1, mean-

ing that the flow poloidal speed Vp is larger than VAp (or equivalently the poloidal

kinetic energy density ρV 2
p /2 is larger than the poloidal magnetic energy density

B2
p/8π ). Thus, the surface M = 1 is crossed at some point on each field/stream

line. The φ̂ parts of Eqs. (31), (32) imply that at the Alfvén surface G = 1 should

also hold. In other words, ̟A(A) which is defined as
√

L/Ω (see Eq. (29)) is the

cylindrical distance of the Alfvén point on each field/stream line. The ratios appear-

ing in the φ̂ parts of Eqs. (31), (32) are then finite.

The Alfvén surface is also a singularity for the Grad–Shafranov Eq. (36). This

implies that a regularity condition F |M=1 = 0 must be satisfied.

The density at the Alfvén surface is directly connected to the integral ΨA. Indeed,

Eq. (30) yields ρA = Ψ 2
A/4π . The square of the Alfvénic Mach number at any point

can be written as M2 = ρA/ρ (so it is 1/ρ normalized to its value at the Alfvén

surface, 1/ρA).

1.3.2 The Bernoulli Equation

The energy integral relation (34) is also called Bernoulli equation. It can be written

as B (A , G , M) = E(A) with

B (A , G , M) =
|∇ A|2

2̟ 2
AΨ 2

AG2
M4 +

Γeff

Γeff − 1
Q

(
Ψ 2

A

4π M2

)Γeff−1

+

+ ̟ 2
AΩ2

[ (

G2 − M2
)2

2G2
(

1 − M2
)2

+
1 − G2

1 − M2

]

+ Φg. (37)

The term |∇ A| and the gravitational potential Φg are regarded as functions of G

and A only.

If we want to find M at each G and on a constant line A, we must find the

intersection of the function B (regarded as a function of M only) with E(A). For

each G �= 1 we have
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∂B (A , G , M)

∂ M2
=

|∇ A|2 M2

̟ 2
AΨ 2

AG2
−

Γeff Q

M2Γeff

(
Ψ 2

A

4π

)Γeff−1

+ ̟ 2
AΩ2

M2
(

1 − G2
)2

G2
(

1 − M2
)3

,

∂2B (A , G , M)

∂
(

M2
)2

=
|∇ A|2

̟ 2
AΨ 2

AG2
+ Γ 2

eff Q

(
Ψ 2

A

4π

)Γeff−1

M2Γeff+2
+ ̟ 2

AΩ2

(

1 − G2
)2

G2

2M2 + 1
(

1 − M2
)4

.

We see that

∂2B (A , G , M)

∂
(

M2
)2

> 0 ,∀ M2 and lim
M2→1±

∂2B (A , G , M)

∂
(

M2
)2

= +∞.

So the first derivative
∂B (A , G , M)

∂ M2
monotonically increases from −∞ (when

M2 → 0+) to ∞ (when M2 → 1−) and from −∞ (when M2 → 1+) to ∞ (when

M2 → ∞). Therefore, ∃ M2
1 ∈ (0 , 1) , M2

2 ∈ (1 ,∞) such that
(

∂B (A , G , M)

∂ M2

)

M2=M2
1 ,2

= 0.

As we see in general there are four roots (see Fig. 3) which correspond to super-

or sub-Alfvénic (depending on if G > 1 or G < 1), in- or outflow (depending on

the sign of M). So, as we change G the function B consists of two grooves which

connect with each other at G = 1 (the singularity M = 1 disappears when G = 1)

and then separate again (see Fig. 4). The two local minima of these grooves move,

and when B = E at this minimum we have a critical point because at this point:

∂B (A , G , M) /∂ M = 0 and ∂B (A , G , M) /∂G = 0 (since immediately after this

point the minimum of the function B decreases in order to be solvable the equation

B = E). This point corresponds to a saddle point of the Bernoulli surface (Fig. 4).

After some manipulation, we find that

M2
∂B (A , G , M)

∂ M2
=

V 4
p − V 2

p

(

C2
s + V 2

A

)

+ C2
s V 2

Ap

V 2
p − V 2

Ap

. So when at this point B = E

(this minimum is a point of the solution), we have V 2
p = V 2

s or V 2
p = V 2

f , where

V 2
s , V 2

f are the two roots of the equation V 4
s ,f − V 2

s ,f(C
2
s + V 2

A) + C2
s V 2

Ap = 0 (with

V 2
s < V 2

f ).

The Vs and Vf are the effective phase speeds of the slow and fast magnetosonic

waves that have wavevectors parallel to V p (for details, see, e.g., Vlahakis [56]).

For this reason, the loci of points where Vp = Vs or Vp = Vf are called slow or fast

magnetosonic surfaces, respectively.

We note that if we knew the field line shape (the function A), the Bernoulli

equation fully determines the flow characteristics, since it gives the remaining

unknown function M . However, the function A must satisfy the transfield (or Grad–

Shafranov) equation, which also depends on M . Thus, the system of the Bernoulli

and transfield equations is coupled and must be solved simultaneously. Nevertheless,

the critical points of the Bernoulli equation are important reference points that help

us understand the general characteristics of a magnetized outflow.
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Fig. 3 The function B for various values of G. The example is taken from an exact polytropic, r self-similar solution, from Vlahkis [56]
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Fig. 4 The 3D diagram for the function B and the isocontours on the G, M plane. We see the

critical solution (thick line) which passes through the three critical points: the slow magnetosonic

(where Vp = Vs), the Alfvén (where Vp = VAp), and the fast magnetosonic (where Vp = Vf). The

example is taken from an exact polytropic, r self-similar solution which is analyzed in detail in

Vlahakis [56]
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The crossing of the fast magnetosonic point is important since it is related to the

causal connection of the flow at large distances with the base of the flow and the

source. In particular, in the superfast regime of the outflow all signals propagate

inside a fast Mach cone, defined by the characteristic curves (which exist since in

this regime the Grad–Shafranov equation (36) is a hyperbolic partial differential

equation). There is a limiting characteristic (or modified fast magnetosonic surface)

which is the horizon for the propagation of the MHD waves, in the sense that all

disturbances from this surface downstream cannot travel back and reach the base of

the flow (for details see, e.g., Bogovalov [9]; Tsinganos et al. [54]; Vlahakis [56];

Sauty et al. [47]). Since this surface is inside the superfast regime, a necessary (but

not sufficient) condition is to have a superfast magnetosonic outflow.

1.3.3 The Flow Near the Central Source

Near the source of the flow (central object or disk) the poloidal magnetic field is

expected to be strong. Thus, at the ejection surface (denoted by subscript ‘i’) it is

expected that Bpi ∼> |Bφi |. In addition, the magnetic energy density is much larger

than the poloidal kinetic energy density, meaning that Mi ≪ 1.

A consequence of these conditions is that the azimuthal speed near the base of

the flow is Vφ ≈ ̟Ω (as can be found by applying Mi ≪ 1 in Eq. (32) and using

the definition of G from Eq. (29); this relation was also discussed in Sect. 1.2.2, as

a consequence of Eq. (21)). The flow rotates with angular velocity Ω . Since Ω is

constant along the field/stream lines, the flow corotates with its base, and plasma

parcels move like ‘beads on rotating wires.’ In the case of disk-driven flows, the

rotation of the base is roughly Keplerian Ω ≈ ΩK =
√

GM/̟ 3
i , while for flows

originating from a central object Ω is the angular velocity of that object.

Since the flow moves as a solid body up to the Alfvén surface whose lever arm

is ̟A, the extracted angular momentum-to-mass flux ratio is not ̟i Vφi ≈ ̟ 2
i Ω ,

but instead ̟ 2
AΩ . This is an exact result, since the integral L gives the total angular

momentum-to-mass flux ratio (see Sect. 1.2.5), and the regularity condition at the

Alfvén surface gives L = ̟ 2
AΩ (see Eq. (29)).

In the sub-Alfvénic part of the flow, ̟i ≪ ̟A, i.e., G i ≪ 1. The azimuthal

magnetic field is then Bφ ≈ −LΨA/̟ (as can be found by applying Mi ≪ 1 and

G i ≪ 1 in Eq. (31)), meaning that the main part of the angular momentum is carried

by the electromagnetic field (the dominant part of L is the −̟ Bφ/ΨA term, see

Eq. (24)). Thus, the product ̟ Bφ is roughly constant along the flow, near the source

(in the sub-Alfvénic region). This product is proportional to the poloidal current I ,

since Jp = (c/4π )∇ × Bφ = (1/2π̟ )∇ I × φ̂, with I =
�

Jp · d S = (c/2)̟ Bφ .

The current lines on the poloidal plane represent the loci of constant poloidal current

(I = constant ⇔ ̟ Bφ = constant). The constancy of ̟ Bφ along the flow means

that the current lines and the streamlines are parallel, with consequences on the

acceleration that will be discussed later.

An interesting subclass of magnetized outflows are the ones which are Poynting

flux dominated near their sources. In these flows the main acceleration mechanisms
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have magnetic origin (contrary to a thermal acceleration scenario). The dominant

term of the energy integral (25) is the Poynting, which – using the approximate

expression of Bφ – gives

E ≈ LΩ = (̟AΩ)2 . (38)

1.3.4 Rough Scalings

From magnetic flux conservation, the poloidal magnetic field drops as ∝ ̟−2 along

any field/stream line.

The azimuthal part of the field is connected to the poloidal current, which is

roughly constant in the sub-Alfvénic region, implying that Bφ ∝ −̟−1. Even after

the Alfvénic surface the Bφ continues to drop roughly as ∝ −̟−1 (looking the

energy integral (25), the Poynting-to-mass flux ratio is proportional to ̟ Bφ ; this

quantity drops only by 1/2 at the distance where half of the energy carried by the

field has been transfered to the matter).

Since the poloidal component of the magnetic field drops faster than the azimuthal

part, after some distance B ≈ |Bφ| (although near the origin Bp ≫ |Bφ|).
From the constancy of the mass-to-magnetic flux, ρVp ∝ Bp, and thus ρVp ∝

1/̟ 2. For increasing Vp along the flow, the density drops faster than ̟−2, and the

pressure drops faster than ̟−2Γeff .

1.3.5 The Fast Magnetosonic Point

As already discussed, the fast magnetosonic point is defined as the locus where

Vp = V f , where V f is the larger solution of V 4
f − V 2

f (C2
s + V 2

A) + C2
s V 2

Ap = 0.

At the distance of that point the flow is expected to be practically cold, since the

thermal pressure drops faster than B2. Using Eq. (21) we can write the poloidal

kinetic energy-to-Poynting flux ratio (the ratio of the corresponding parts in the

energy integral (25))

(

V 2
p /2

−̟Ω Bφ/ΨA

)

f

≈
1

2

[
(

1 −
Vφ

̟Ω

)
B2

B2
φ

]

f

≈
1

2
(39)

(since at the fast point the azimuthal magnetic field is the dominant component

and the azimuthal velocity much smaller than ̟Ω). Thus, roughly 1/3 of the total

energy flux has been transfered to the matter up to the fast point (with the remaining

2/3 still carried by the electromagnetic field). Thus, V 2
f /2 = E/3, or,

Vf =
(

2

3
E

)1/2

. (40)

At the fast point M ≫ 1, G ≫ 1, and the expression (31) for the azimuthal

magnetic field gives −̟Ω Bφ/ΨA ≈ LΩG2/M2 = (Ω2 Bp̟
2)/(ΨAVp), since
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Vp = M2 Bp/ΨA from Eq. (32). Combining the above relation with Eq.(39) we

find the velocity at the fast magnetosonic point

Vf =

[

Ω2
(

Bp̟
2
)

f

ΨA

]1/3

. (41)

A combination of the previous equation with Eq. (40) yields that
(

Bp̟
2/A

)

f
=

(

ΨA/AΩ2
)

(2E/3)3/2, since the Poynting flux at the fast point equals 2/3 of the

total energy flux
(

−̟Ω Bφ

)

f
/ΨA = (2/3)E . Combining the previous two rela-

tions we find the ratio of azimuthal-to-poloidal magnetic field at the fast point
(

−Bφ/Bp

)

f
= ̟fΩ/ (2/3E)1/2. For strongly magnetized flows near the source

E ≈ LΩ = (̟AΩ)2, and thus
(

−Bφ/Bp

)

f
= (3/2)1/2 ̟f/̟A. Clearly the

azimuthal component of the magnetic field is the dominant component, as was

previously stated.

As we have already explained, at small distances from the source almost all

the angular momentum is carried by the electromagnetic field, resulting in L =
̟ 2

AΩ ≫ ̟ 2
i Ω ≈ ̟i Vφi . The ratio of the angular momentum flux carried by the

field over the total angular momentum flux decreases with distance, since angu-

lar momentum is transfered to the matter. This ratio is
(

−̟ Bφ/ΨA

)

/L , and for

strongly magnetized flows in which LΩ ≈ E , it equals the ratio of the Poynting flux

over the total energy flux
(

−̟Ω Bφ/ΨA

)

/E . Since at the fast magnetosonic point

the energy flux carried by the matter is 1/3 of the total, the angular momentum flux

carried by the matter is also 1/3 of the total (with the remaining 2/3 still in the

field). Equivalently, the angular velocity at the fast is Vφf ≈ L/ (3̟f). The ratio

Vφf/
(

̟ f Ω
)

becomes ̟ 2
A/
(

3̟ 2
f

)

and is much smaller than unity as was assumed

in Eq. (39).

Using Eq. (32) the Vφf ≈ L/ (3̟f) yields the ratio
(

G2/M2
)

f
= 2/3. Since

G = ̟/̟A and M = ρA/ρ, we find
(

ρf̟
2
f

)

/
(

ρA̟ 2
A

)

= 2/3.

1.3.6 The Flow at Large Distances

The flow velocity in principle continues to increase after the fast magnetosonic sur-

face. Its maximum possible value is Vmax =
√

2E . For strongly magnetized flows

near the source E ≈ LΩ = ̟ 2
AΩ2, and thus Vmax ≈

√
2LΩ = ̟AΩ

√
2. Since

Vφi ≈ ̟iΩ , the ratio Vmax/Vφi = (̟A/̟i )
√

2.

However, it is not always possible to have a full transformation of Poynting to

kinetic energy flux, and the terminal velocity V∞ may be smaller than Vmax. Defining

the function

ζ =
V 2

p /2

E
, (42)

the efficiency of the acceleration is the terminal value of this function ζ∞, and the

terminal velocity is V∞ = ζ
1/2
∞ Vmax.
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At large distances the two dominant parts of the energy-to-mass flux ratio are the

kinetic ζE and the Poynting −̟Ω Bφ/ΨA = (1 − ζ )E . Using Eq. (31) we find that

ζ ≈ 1 − G2/M2. Equation (32) then implies that

Vφ ≈ ζ
L

̟
, (43)

meaning that the efficiency of the transfer of angular momentum from the field to

matter is also ζ .

Substituting the definition of ζ , Eq. (42), and using E ≈ LΩ we find

V 2
p

2̟ Vφ

= Ω . (44)

Thus, the above combination of Vp and ̟ Vφ remains constant as long as the

flow is accelerated. The terminal values of these quantities, which are observable

quantities, also satisfy relation (44). For disk-driven flows with Ω =
√

GM/̟ 3
i we

can estimate the launching region of the wind (Anderson et al. [1])

̟i ≈

(

4GM̟ 2
∞V 2

φ∞

V 4
∞

)1/3

. (45)

Equation (44), with L = ̟ 2
A

√

GM/̟ 3
i and ̟i from Eq. (45), gives the value of

the quantity ζ∞̟ 2
A/̟ 2

i as a function of observable quantities (Ferreira et al. [26])

ζ∞
̟ 2

A

̟ 2
i

=
(

̟∞Vφ∞V∞√
2GM

)2/3

. (46)

1.4 The Poloidal Components of the Momentum Equation

By analyzing the component of the momentum equation along the flow, we can

identify the acceleration mechanisms and estimate the resulting bulk velocities that

each mechanism can give. The full analysis can be found in the second part of the

chapter, in Sect. 2.2.2. We only need to make the following substitutions since now

we are examining nonrelativistic flows: x → 0, γ → 1, ξ → 1, μ → 1 + E/c2,

while we drop the electric field and the related force.7 Summarizing, the acceleration

mechanisms are

7 In the second part of the chapter we ignore gravity, which, however, does not play a significant

role in the case where the flow is strongly magnetized near the source.
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1. The pressure-gradient force fP‖ that gives velocities of the order of the sound

speed.

2. The magnetocentrifugal mechanism that gives velocities of the order of the initial

Keplerian speed.

3. The magnetic acceleration that is based on the decline in the poloidal current

|I | = (c/2)̟ Bφ and gives final speeds at most
√

2E .

Similarly, the projection of the momentum equation in the transfield direction is

analyzed in Sect. 2.2.4. Contrary to the relativistic case where the electric force is

important and almost balances the collimating magnetic force, here the curvature

radius can be R ∼> ̟ , meaning that the magnetic self-collimation is very effective.

1.5 A Sample Solution

There exist a large number of exact solutions (by means of solving the full momen-

tum equation and not only its component along the flow) of the nonrelativisitc,

polytropic, axisymmetric, ideal MHD equations. They belong to two categories:

semianalytic works (e.g., Blandford and Payne [6]; Contopoulos and Lovelace [15];

Rosso and Pelletier [45]; Ferreira [21]; Vlahakis et al. [62]; Ferreira and Casse [22])

and end-states of time-dependent axisymmetric simulations (e.g., Ouyed and Pudritz

[43]; Krasnopolsky et al. [33]; Bogovalov and Tsinganos [8]; Kato et al. [29]; Casse

and Keppens [12]; Gracia et al. [25]; Meliani et al. [38]; Fendt [18]; Zanni et al. [64];

Matsakos et al. [37]), to name just a few of them. There also exist 3D simulations

with similar results (Ouyed et al. [43]; Anderson et al. [2]). On the other hand,

nonpolytropic studies are reviewed in Tsinganos [53] and Sauty [48].

All these solutions obey the analytical results presented in the previous sections.

Details such as if the outflow is driven from the inner part of an accretion disk,

from a more extended part of the disk, or from a stellar surface, do not substantially

change the derived results. What matters is the relative contribution of the various

energy flux terms at the ejection surface and the magnetic flux distribution. If the

thermal part dominates (this could happen, e.g., in the vicinity of the rotation axis

where the Poynting flux vanishes) the flow is thermally-driven. If the Poynting part

dominates (this is the case for disk-driven jets, but could also apply to stellar jets,

at distances not so close to the rotation axis) the flow is magnetically driven. As an

example of a magnetically disk-driven flow, the semi-analytical solution of Vlahakis

et al. [62] is presented below.

Figure 5 shows the flow shape and the current lines. Obviously collimation is

very efficient, a result mainly of the Jp × Bφ/c force density. In the region close to

the rotation axis, this force density is normal to the current line and points toward

the axis. Its projection in the transfield direction collimates the flow, while the pro-

jection along the flow has the direction of the flow speed (resulting in acceleration).

Note that close to the axis the poloidal current has negative component along ẑ

(we remind that the Bφ < 0). At large distances from the rotation axis, where

the component of Jp along ẑ is positive, the Jp × Bφ/c force contributes to the
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Fig. 5 Field/stream lines

(solid lines) and current lines

(dashed lines) on the poloidal

plane

acceleration, but its transfield component tries to decollimate the flow. Collimation

in this regime is mainly due to the poloidal magnetic field force density Jφ × Bp/c.

Figure 6 shows the angle between the flow direction and the equator. Close to

the disk the flow makes an angle ∼ 67◦ with the equator, while at large distances it

becomes more or less cylindrical. Note that the angle near the disk does not satisfy

the criterion of Blandford and Payne [6] according to which plasma parcels move

out along the rotating field lines only if the angle between the lines and the equatorial

plane is larger than 60◦. This is so, because this criterion holds only for cold flows;

with a small contribution from the thermal pressure plasma can move out even on

lines that make angle larger than 60◦ with the equatorial plane.

Figure 7 shows the components of the flow speed. Near the disk surface the

azimuthal part dominates. In fact Vφ increases, in agreement with the expected

corotation up to distances comparable to the Alfvén surface. The two poloidal

components are comparable up to some distance (z ∼ 10̟ [z = 0]), after which

collimation results in Vz ≫ V̟ . The asymptotic value of the velocity is ∼ 10Vφi .

Figure 8 shows the various Mach numbers. The flow crosses the slow magne-

tosonic and Alfvén surfaces, and becomes superfast at z ∼ 20̟ (z = 0).

Figure 9 shows the various contributions of the energy-to-mass flux ratio. Close

to the disk the flow is Poynting dominated. The acceleration results in increasing

poloidal kinetic energy part and decreasing electromagnetic part. At the fast magne-

tosonic surface (z ∼ 20̟ [z = 0]), one-third of the total energy has been transfered

to the matter, in accord with the analytical estimation. The acceleration continues

after the fast magnetosonic surface and reaches efficiency ∼ 100% asymptotically.

The peculiar behavior at very large distances (e.g., increasing azimuthal speed

as seen in Fig. 7, or overfocussing field/stream lines as seen in Fig. 5, marks the
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regime where radially self-similarity no longer holds. Another limitation of radially

self-similar models is that they give infinite values for various physical quantities

near the rotation axis (see e.g., Ferreira [23]). Nevertheless, the solution captures

all the basic characteristics of a magnetized disk-driven outflow. In fact, simulations

extending this particular self-similar solution by removing the singularities on the

rotation axis show that the flow remains very close to the analytical result (Gracia

et al. [25]; Matsakos et al. [37]).

2 Relativistic MHD

A flow can be relativistic in four ways:

1. The bulk velocity can be relativistic, V ∼< c.

2. The particle’s motion in the rest frame of the flow can be relativistic, or equiv-

alently, the particle’s kinetic energy can become comparable or larger than their

rest energy. Since the particle’s kinetic energy is ∼ kBT , this regime is charac-

terized by relativistic temperatures kBT ∼> mc2.

3. Relativistic effects for the electromagnetic field are measured through the light

surface whose cylindrical distance is ̟ = c/Ω. The flow can reach and cross

this surface.

4. General relativistic effects become important if the distances from the central

mass M are r ∼ GM/c2.

In the following we analyze relativistic flows covering the first three cases.8 For

this purpose, it is enough to use special relativity.

2.1 Equations of Steady, Axisymmetric, Special Relativistic,

Magnetized Outflows

The stress-energy tensor of relativistic MHD consists of two parts – matter (sub-

script M) and electromagnetic fields (subscript EM): T κν = T κν
M + T κν

EM (κ, ν =
0, 1, 2, 3). The former is given by T κν

M =
(

ρ0c2 + ρ0e + P
)

U κU ν/c2 + Pηκν ,

where P is the pressure, U ν = (γ c, γ V ) is the fluid four-velocity, and ηκν =
diag (−1 1 1 1) is the metric tensor (assuming a flat spacetime and Cartesian space

coordinates x j , j = 1, 2, 3). Here ρ0 is the rest-mass density, ρ0e = P/(Γ − 1)

is the internal energy density, with Γ denoting the polytropic index (= 4/3 or

5/3 in the limit of an ultrarelativistic or a nonrelativistic temperature, respec-

tively), V is the three-velocity measured in the frame of the central object, and

γ = 1/(1 − V 2/c2)1/2 is the Lorentz factor.

8 The last one can be treated in the framework of general relativity, either in a fixed background

spacetime (Schwarzschild or Kerr), or taking into account the influence of the stress energy of the

matter and the electromagnetic field to the spacetime (i.e., solving also Einstein’s equations).
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Introducing the specific relativistic enthalpy ξc2, where

ξ =
ρ0c2 + ρ0e + P

ρ0c2
= 1 +

Γ

Γ − 1

P

ρ0c2
, (47)

and including the contribution of the electric (E) and magnetic (B) fields (measured

in the central object frame), the components of the total stress-energy tensor take the

form ( j, k = 1, 2, 3)

T 00 = γ 2ξρ0c2 − P +
E2 + B2

8π
, (48)

T 0 j = T j0 =
(

ξρ0cγ 2V +
E × B

4π

)

· x j , (49)

T jk = ξρ0γ
2V j Vk −

E j Ek + B j Bk

4π
+
(

P +
E2 + B2

8π

)

η jk , (50)

with T 00, cT 0 j x j , and T jk representing the energy density, energy flux, and spatial

stress contributions, respectively.

The steady electromagnetic field obeys Maxwell’s equations

∇ · B = 0 , ∇ · E =
4π

c
J 0 , ∇ × B =

4π

c
J , ∇ × E = 0 , (51)

where J ν =
(

J 0, J
)

is the four-current (with J 0/c representing the charge density).

Under the assumption of ideal MHD, the comoving electric field is 0, which implies

E = −
V

c
× B . (52)

The mass conservation equation is (ρ0U ν) ,ν = 0, or

∇ · (γρ0V ) = 0 . (53)

In the absence of a gravitational field or any other external force, the equations

of motion are T κν
,ν = 0. The entropy conservation equation (the first law of thermo-

dynamics) is obtained by setting Uκ T κν
,ν = 0 ⇔ V ·∇e + PV ·∇ (1/ρ0) = 0, which

can be rewritten (using the equation of state ρ0e = P/ [Γ − 1]) as

V · ∇
(

P/ρΓ
0

)

= 0 . (54)

An equivalent expression for the specific entropy conservation in adiabatic flows,

independent on the equation of state, is V · ∇ P = ρ0c2V · ∇ξ .

The momentum conservation equation is given by the κ = 1, 2, 3 components of

T κν
,ν = 0,
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γρ0 (V · ∇) (ξγ V ) = −∇ P +
(

J 0 E + J × B
)

/c . (55)

One can carry out a partial integration of Eqs. (51), (52), (53), (54) and (55) under

the assumptions of axisymmetry [in cylindrical coordinates (̟ ,φ , z), ∂/∂φ = 0]

and of a zero azimuthal electric field (Eφ = 0) (e.g., Bekenstein and Oron [4];

Lovelace et al. [35]; Okamoto [42]; Camenzind [10]).

The solenoidal condition on the magnetic field, ∇ · B = 0, implies that there is

a poloidal magnetic flux function A(̟ , z), defined by 2π A =
�

Bp · d S, which

satisfies

B = Bp + Bφ , Bp = ∇A × φ̂/̟ , (56)

where the subscripts p and φ denote the poloidal and azimuthal components, respec-

tively. Furthermore, Eq. (52) together with the condition Eφ = 0 implies V p ‖ Bp,

from which it follows that there are functions ΨA and Ω (whose coordinate depen-

dence we discuss below) such that

V =
ΨA

4πγρ0

B + ̟Ωφ̂ ,
ΨA

4πγρ0

=
Vp

Bp

. (57)

The continuity equation (53), using Eq. (57), yields Bp · ∇ΨA = 0 ⇔ ΨA =
ΨA(A), i.e., the quantity ΨA is a constant of motion.

The combination of Eqs. (52) and (57) gives

E = −
Ω

c
∇ A , E =

̟Ω

c
Bp . (58)

Substituting the previous expression for the electric field in Faraday’s law we

find ∇Ω × ∇ A = 0 ⇔ Ω = Ω(A), i.e., the quantity Ω is a constant of motion.

The entropy conservation equation (54) gives the adiabat P/ρΓ
0 = Q(A), i.e.,

P/ρΓ
0 is a conserved quantity along the flow, related to the specific entropy.

Two more conserved quantities can be found from the integration of the two

components of the momentum equation (55) along the azimuthal direction φ̂, and

along the flow V . The first is related to the total specific angular momentum and the

second to the total energy-to-mass flux ratio. The following properties are helpful

in deriving these two remaining integrals: (1) For an axisymmetric vector F, the

poloidal part of ∇× F is ∇×(Fφφ̂) = ∇(̟ Fφ)×φ̂/̟ and its azimuthal part is ∇×
Fp. (2) The equality (F ·∇)F = ∇(F2/2)+(∇×F)×F is an identity. We first apply

property (2) for the vector F = ξγ V in the momentum equation (55). Then, dotting

with φ̂ yields γρ0[∇ × (ξγ Vφφ̂)]×V p = Jp × Bp/c. Substituting Jp = (c/4π )∇ ×
(Bφφ̂) and using property (1) for the vectors ξγ Vφφ̂ and Bφφ̂ yields 4πγρ0V p ·
∇(ξγ̟ Vφ) = Bp · ∇(̟ Bφ). Using the poloidal part of Eq. (57) we finally get that

the quantity ξγ̟ Vφ − ̟ Bφ/ΨA is a field line constant. This integral represents

the total specific angular momentum conservation. For the integral related to energy

conservation, we apply property (2) for the vector F = ξγ V in the momentum
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equation (55) and then, by dotting with V , we get (ρ0/ξ )V · ∇(ξ 2γ 2V 2/2) + V ·
∇ P = V · ( J × B/c). On the left-hand side we use the identity γ 2V 2/c2 = γ 2 − 1,

and also the V · ∇ P = ρ0c2V · ∇ξ (see the comment after Eq. (54)). The left-hand

side becomes then γρ0V p · ∇(ξγ c2). The right-hand side, using Eq. (57), can be

written as ̟Ωφ̂ · ( Jp × Bp/c). Substituting Jp = (c/4π )∇ × (Bφφ̂) and using

property (1) we get Bp · ∇(̟ΩBφ/4π ). Equating the left- and right-hand sides and

using the poloidal part of Eq. (57) we finally get that the quantity ξγ c2−̟ΩBφ/ΨA

is a field line constant. This integral represents the total energy-to-mass flux ratio.

Summarizing, the full set of steady-steady equations can be partially integrated

to yield five field line constants:

(a) The mass-to-magnetic flux ratio

ΨA = ΨA(A) = 4πγρ0Vp/Bp . (59)

(b) The field angular velocity, which equals the matter angular velocity at the foot-

point of the field line at the midplane of the disk,

Ω = Ω(A) =
Vφ

̟
−

Vp

̟

Bφ

Bp

. (60)

(c) The total (matter + magnetic) specific angular momentum,

L = L(A) = ξγ̟ Vφ − ̟ Bφ/ΨA . (61)

(d) The total energy-to-mass flux ratio μc2, where

μ = μ(A) = ξγ −
̟Ω Bφ

ΨAc2
. (62)

(e) The adiabat

Q = Q(A) =
P

ρΓ
0

. (63)

Equation (63) is the usual polytropic relation between density and pressure. The

polytropic index takes the value 4/3 if the temperatures are relativistic, and 5/3 if

not. Any value of Γ other than 4/3 or 5/3 would imply a nonadiabatic evolution

and hence require the incorporation of heating/cooling terms into the entropy and

momentum equations.

Two integrals remain to be performed, involving the Bernoulli and transfield

equations. There are correspondingly two unknown functions, which we choose to

be the magnetic flux function A, and the “Alfvénic” Mach number (e.g.,

Michel [40])
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M ≡

(

4πρ0ξγ 2V 2
p

B2
p

)1/2

=
(

ξΨ 2
A

4πρ0

)1/2

. (64)

We define the cylindrical radius of the field line in units of the light surface radius,

x ≡
̟Ω

c
. (65)

We also define the Alfvénic lever arm by ̟A ≡ (L/μΩ)1/2 [and correspondingly

xA ≡ ̟AΩ/c = (LΩ/μc2)1/2] and use it to scale the cylindrical radius of the field

line by introducing

G ≡
̟

̟A

=
x

xA

. (66)

We now give the expressions for the physical quantities in terms of the defined

variables and the explicit expressions for the Bernoulli and transfield equations.

We may write for the physical quantities

ρ0 =
ξΨ 2

A

4π M2
, P = Q

(
ξΨ 2

A

4π M2

)Γ

, ξ = 1 +
Γ

Γ − 1

Q

c2

(
ξΨ 2

A

4π M2

)Γ −1

. (67)

B =
∇ A × φ̂

̟
−

μcΨAx2
A

x

1 − G2

1 − M2 − x2
φ̂ , (68)

E = −
Ω

c
∇ A , (69)

γ =
μ

ξ

1 − M2 − x2
A

1 − M2 − x2
, (70)

γ
V

c
=

M2

cξΨA

∇ A × φ̂

̟
+

μxA

ξG

G2 − M2 − x2

1 − M2 − x2
φ̂ , (71)

where the expressions for γ, Vφ , and Bφ come from a combination of Eqs. (60),

(61), and (62).

Knowing the five field line constants (Ω , ΨA, L , μ, Q), or equivalently the (̟A,

xA, σM, μ, q), where

σM ≡
AΩ2

c3ΨA

, q ≡
Ψ 2

A

4π

(
Γ

Γ − 1

Q

c2

) 1
Γ −1

, (72)

we can find the quantities A, M , x , G, ξ by solving the following system of equa-

tions:

G =
̟

̟A

, x = xAG, M2 = q
ξ

(ξ − 1)
1

Γ −1

, (73)
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the Bernoulli equation

μ2

ξ 2

G2
(

1 − M2 − x2
A

)2 − x2
A

(

G2 − M2 − x2
)2

G2
(

1 − M2 − x2
)2

= 1 +
[
σM M2̟∇ A

ξ x2 A

]2

, (74)

which is obtained after substituting all quantities in the identity γ 2 −
(

γ Vφ/c
)2 =

1 +
(

γ Vp/c
)2

using Eqs. (70) and (71), and which in the nonrelativistic limit takes

the familiar form (after Taylor expanding in 1/c2)

V 2

2
+

Γ

Γ − 1

P

ρ0

−
̟Ω Bφ

ΨA

= (μ − 1)c2,

and the transfield equation (obtained from the component of the momentum equa-

tion along −∇ A)

[

x2 (∇ A)2 d ln (xA/̟A)

d A
− L̄ A(1 − M2 − x2)

](
∇ A

̟

)2

+

+

[

2x2
A

̟ 3
AG

(∇ A)2 +
μ2x6

A A2

̟ 5
Aσ 2

M M2G3

(
G2 − M2 − x2

1 − M2 − x2

)2
]

ˆ̟ · ∇ A−

−
M2

2
∇

[
(

∇ A

̟

)2
]

· ∇ A −
Γ − 1

Γ
∇
[
ξ (ξ − 1)

M2

A2x4
A

σ 2
M̟ 4

A

]

· ∇ A−

−
1

2̟ 2
∇

[

μ2 A2x6
A

σ 2
M̟ 2

A

(
1 − G2

1 − M2 − x2

)2
]

· ∇ A = 0 , (75)

where the operator L̄ ≡ ∇2 − (2/̟ ) ˆ̟ · ∇ is related to the curvature radius of the

poloidal field lines R = |∇ A|
(

L̄ A − ∇ A · ∇ ln |∇ A/̟ |
)−1

.

Solving the MHD equations requires the specification of seven constraints (cor-

responding to the seven unknowns A, Bφ , V̟ , Vz , Vφ , ρ0, and P), of which four

are associated with boundary conditions at the source and three are determined

by the regularity requirements at three singular surfaces that are related to the

Alfvén, slow, and fast magnetosonic waves. In general, if we start the integration

downstream from some surface, the number of boundary conditions which we must

give on this surface is equal to the number of waves which can be emitted from

this surface downstream. (These waves which can propagate from a given sur-

face are: one entropy, two Alfvén, two slow and two fast magnetosonic waves).

The remaining conditions (until reach the number seven) are specified in order to

pass through singular surfaces. When we pass through these surfaces the number

of outgoing waves is changed. Thus, the component of the velocity perpendicular

to a singular surface equals the phase velocity of the Alfvén, slow or fast mag-

netosonic wave. For example, if we begin the integration from some surface with

the component of the velocity perpendicular to this surface smaller than the cor-
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responding component of the slow speed, then we must give four boundary con-

ditions (related to the entropy wave, one Alfvén, one slow and one fast wave).

The other three are specified in order to pass the solution through the three sin-

gular surfaces associated to the slow magnetosonic, Alfvén, and fast magnetosonic

waves. If, on the other hand, the initial velocity is super-slow magnetosonic but

sub-Alfvénic, the number of outgoing waves is five (one entropy, two slow, one

Alfvén, and one fast), and we should give five boundary conditions at the base of the

flow.

2.2 General Characteristics of Magnetized Outflows

We are interested in examining initially Poynting-dominated outflows, meaning that

the electromagnetic part of the energy-to-mass flux ratio is much larger than the

corresponding part for the matter, i.e., initially (subscript i) ̟iΩ|Bφ|i/ΨAc2 ≈
μ ≫ ξiγi (see Eq. (62)). The value of the field line constant μ should be ≫ 1 such

that the maximum possible Lorentz factor is μ ≫ 1, corresponding to relativistic

flows.

We also restrict our analysis to outflows that initially have sub-Alfvénic veloci-

ties. The Alfvén surface is defined as the locus of points where static Alfvén waves

with wavevector in any direction in the meridional plane (in the central object’s

frame) can exist (i.e., Eq. (100) with ω = 0 and kφ = 0 is satisfied). An equiva-

lent statement is that the Alfvén surface marks the locus of points where the flow

proper velocity in any direction in the meridional plane is equal to the comov-

ing proper phase speed of an Alfvén wave that propagates in that direction (see

Eq. (102)). Equivalently, at the Alfvénic surface 4πρ0ξγ 2V 2
p = B2

p

(

1 − x2
)

⇔
M2 = 1 − x2. The expressions for Bφ , γ , Vφ (see Eqs. (68), (70), (71)) imply

that at the Alfvén surface G = 1, or x = xA, and ̟ = ̟A, justifying the

definition of ̟A = (L/μΩ)1/2 being the Alfvénic lever arm. Thus, sub-Alfvénic

flow means that xi ≪ xA and M2
i ≪ 1 − x2

A. By employing Eq. (70) we find that

ξiγi ≈ μ(1 − x2
A)/(1 − x2

i ) ≈ μ(1 − x2
A). Since μ ≫ 1, the value of the field line

constant x2
A ≈ 1 − ξiγi/μ ≈ 1−, meaning that the Alfvén and light surfaces (x = 1)

almost coincide (the Alfvénic surface is, however, always located inside the light

surface).

2.2.1 Forces in the Poloidal Plane

The momentum equation (55) can be written as the sum of the following force den-

sities (for simplicity we use hereafter the term force):

f G + f T + f C + f I + f P + f E + f B = 0 , (76)

where
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f G = −γρ0ξ (V · ∇γ ) V

f T = −γ 2ρ0 (V · ∇ξ ) V : temperature force

f C = ˆ̟ γ 2ρ0ξV 2
φ /̟ : centrifugal force

f I = −γ 2ρ0ξ (V · ∇) V − f C

f P = −∇ P : pressure force

f E = (∇ · E) E/4π : electric force

f B = (∇ × B) × B/4π : magnetic force

The ‘gamma’ force f G further decomposes into two terms: f G = f Gp
+ f Gφ

,

with

f Gp
= −

γ 4ρ0ξ

2c2

(

V · ∇V 2
p

)

V , f Gφ
= −

γ 4ρ0ξ

2c2

(

V · ∇V 2
φ

)

V .

The poloidal part of the f I force is

−γ 2ρ0ξ
(

V p · ∇
)

V p = −γ 2ρ0ξ

(

V 2
p

∂ϑ

∂ℓ

∇ A

| ∇ A |
+

∂Vp

∂ℓ
V p

)

,

where ℓ is the arclength along the poloidal field line, ϑ is the angle between the

poloidal magnetic field and the rotation axis (sin ϑ = V̟ /Vp), and the derivative

∂/∂ℓ = sin ϑ ∂/∂̟ is taken keeping A constant. The radius of curvature of a

poloidal field line is R = −(∂ϑ/∂ℓ)−1 (positive when the field line bends toward

the axis, i.e., when ϑ decreases along the poloidal flow line).

2.2.2 Acceleration

The projection of Eq. (76) along the poloidal flow, i.e., along b̂ ≡ Bp/Bp =
sin ϑ ˆ̟ + cos ϑ ẑ, is

γ 2ρ0ξ

2

∂V 2
p

∂ℓ
+

γ 4ρ0ξV 2
p

2c2

∂V 2
p

∂ℓ
= −

γ 4ρ0ξV 2
p

2c2

∂V 2
φ

∂ℓ
− γ 2ρ0V 2

p

∂ξ

∂ℓ
+

+ γ 2ρ0ξ
V 2

φ

̟
sin ϑ − ρ0c2 ∂ξ

∂ℓ
−

Bφ

4π̟

∂
(

̟ Bφ

)

∂ℓ
. (77)

The terms on the right-hand side of Eq. (77) are recognized as fGφ‖, fT‖, fC‖,

fP‖, and fB‖, respectively, where a subscript ‖ denotes the component of a vector

along the poloidal field line. The first term on the left-hand side of Eq. (77) is − fI‖,

whereas the second term is − fGp‖ (note that the electric force has no component

along the flow, fE‖ = 0). The magnetic force component fB‖ decomposes into the

azimuthal magnetic pressure gradient −∂
(

B2
φ/8π

)

/∂ℓ and the magnetic tension

−B2
φ sin ϑ/4π̟ . These two parts cancel each other when B2

φ(A ,̟ ) ∝ 1/̟ 2;

if B2
φ(A ,̟ ) decreases faster than ̟−2 then the gradient of the azimuthal mag-

netic pressure exceeds the magnetic tension, resulting in a positive fB‖. Thus, the

important quantity that determines the magnetic acceleration is the product ̟ Bφ ,
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which is proportional to the Poynting-to-mass flux ratio, since (c/4π )(E × B) ·
b̂/(γρ0Vp) = −(Ω/ΨA)(̟ Bφ) (see also Eq. (62)). The product ̟ Bφ is also pro-

portional to the total poloidal current Jp = (c/4π )∇ × Bφ = (1/2π̟ )∇ I × φ̂,

with I =
�

Jp · d S = (c/2)̟ Bφ ; the meridional current lines represent the loci of

constant total poloidal current (I = const ⇔ ̟ Bφ = const).

In the nonrelativistic regime (V ≪ c , x ≪ 1 , ξ ≈ 1, fGφ‖ = fT‖ = 0), the

pressure force fP‖ dominates up to the slow magnetosonic point, but the bulk of the

acceleration is either magnetocentrifugal – corresponding to the fC‖ term, which can

be interpreted in the ‘bead on a wire’ picture (e.g., Blandford and Payne [6])9 – or a

consequence of the magnetic pressure-gradient force fB‖ (which near the surface of

the disk can be interpreted in the ‘uncoiling spring’ picture; e.g., Uchida and Shibata

[55]).10

The magnetic force generally becomes important also in flows where the cen-

trifugal acceleration initially dominates: in this case the inertia of the centrifugally

accelerated gas amplifies the Bφ component, and eventually (beyond the Alfvén

point) fB‖ becomes the main driving force. This force continues to accelerate the

flow beyond the fast magnetosonic point (which separates the elliptic and hyperbolic

regimes of the MHD partial differential equations).11

In the case where the outflow attains a highly relativistic speed, the centrifu-

gal acceleration cannot play an important role. This is because the non-negligible

Vφ that would be required in this case would constrain the maximum value of

the poloidal speed: V 2
p = c2(1 − 1/γ 2) − V 2

φ < c2 − V 2
φ . Therefore, in Eq. (77),

fC‖ ≈ 0 (and also fGφ‖ ≈ 0). The fP‖ force can be neglected since fT‖/ fP‖ =
(

γ Vp/c
)2 ≫ 1. The two remaining terms are fT‖ (a force with a relativistic origin)

and fB‖. The expressions for these terms in Eq. (77) (or, equivalently, Eq. (62) for

the total energy-to-mass flux ratio) indicate that the bulk Lorentz factor can increase

in response to the decline in either the enthalpy-to-rest-mass ratio ξ (the thermal

acceleration case) or the Poynting-to-mass flux ratio ∝ −̟ Bφ (the magnetic accel-

eration case) along the flow. When the temperature is relativistic, the initial acceler-

ation is dominated by the temperature force, but after ξ drops to ∼ 1 the magnetic

force takes over.

9 The strong poloidal magnetic field line plays the role of the wire. In the cold limit one has M ≪ 1

and x ≪ xA (with xA ∼< 1) near the base of the flow, implying that the azimuthal field satisfies

−̟ Bφ/LΩ ≈ 1 − G2(1 − x2
A) + M2 ≈ 1 and hence that the fB‖ term is negligible and that a

near-corotation (Vφ/̟Ω ≈ 1 − M2/G2 ≈ 1) holds. The small value of M in turn implies a large

density and hence a measurable thermal pressure, resulting in a nonnegligible pressure force at the

base.
10 In this picture, the winding-up of the field lines by the disk rotation produces a large azimuthal

magnetic field component that is antiparallel to Vφ in the northern hemisphere (and parallel to

Vφ in the southern hemisphere), and a corresponding outward-directed magnetic pressure gradient

−∇(B2
φ/8π ).

11 At this point, static fast magnetosonic waves with wavevectors parallel to V p in the central

object’s frame can exist (i.e., Eq. (101) with ω = 0 , k ‖ V p is satisfied). The fast magnetosonic

point is equivalently defined by the condition that the poloidal proper speed equals the comoving

proper phase speed of a fast magnetosonic wave whose wavevector is parallel to V p (see Eq. (102)).
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When the outflow speed is only mildly relativistic, the magnetocentrifugal force

may be important during the initial acceleration phase, especially if the tempera-

tures are nonrelativistic. It is, however, also conceivable that the magnetic pressure-

gradient force dominates from the start, as might be the case if the azimuthal field

component at the disk surface is large enough.

We can obtain an expression for fC‖ as follows. By eliminating ξγ between

Eqs. (61) and (62), we obtain a relation between ̟ Vφ and ̟ Bφ :

̟ΩVφ

c
= 1 −

μ(1 − x2
A)

μ + ̟Ω Bφ/ΨAc2
, (78)

whose divergence along the flow implies

∂(̟ Vφ)

∂ℓ
=

μ(1 − x2
A)

ΨAξ 2γ 2

∂(̟ Bφ)

∂ℓ
. (79)

Employing the relations for fB‖, fC‖ (see Eq. (77)), and Eqs. (67), (68), (69),

(70) and (71), we obtain

fC‖ = −
ξρ0γ

2

2

∂V 2
φ

∂ℓ
+

(1 − x2
A)(1 − M2 − x2)

1 − M2 − x2
A

Vφ

Vp

Bp

(−Bφ)
fB‖ . (80)

The first term on the right-hand side of Eq. (80) can give rise to either acceleration

(when Vφ decreases along the flow line) or deceleration (when Vφ increases, as in

the corotation regime at the base of the outflow). This term, together with fGφ‖, can

lead to a situation in which Vp increases (resp., decreases) and Vφ decreases (resp.,

increases) while the Lorentz factor remains roughly constant. The second term on

the right-hand side of Eq. (80), which is proportional to fB‖, demonstrates that the

centrifugal force also has a magnetic component and accounts for the Poynting-to-

kinetic energy transfer that underlies the magnetocentrifugal acceleration process

(see also Contopoulos and Lovelace [15] for a related discussion). The form of this

term makes it clear why the centrifugal force exceeds the magnetic force during

the initial stage of the acceleration, when the flow is still nonrelativistic (x ≪ 1,

M ≪ 1, with Bp > |Bφ|, Vφ > Vp).

The conclusion from the above analysis is that, even though centrifugal and ther-

mal effects could dominate initially, the magnetic force eventually takes over and

is responsible for the bulk of the acceleration to high terminal speeds, correspond-

ing to terminal Lorentz factors of the order of the energy integral μ. Li et al. [34]

described the efficient conversion of Poynting-to-kinetic energy fluxes in relativistic

MHD outflows in terms of a ‘magnetic nozzle’ (see also Vlahakis and königl [58]).

This effect is not inherently relativistic — this conclusion has, in fact, been veri-

fied explicitly in the case of the nonrelativistic self-similar solutions constructed by

Vlahakis et al. [62].

In general, besides the acceleration due to the decline in the specific enthalpy, the

only other available acceleration mechanism is based on the decline of the poloidal
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current, i.e., the quantity −̟ Bφ should be a decreasing function along the flow.

In other words, as the flow moves along a particular field line it crosses current

lines with decreasing |I | = (c/2)(−̟ Bφ), meaning that it is accelerated and the

Poynting-to-matter energy flux ratio decreases. Since the quantity ̟ Vφ is a given

function of ̟ Bφ (see Eqs. (78), (79)), it always follows the change of the poloidal

current and increases whenever the Lorentz force accelerates the flow.

2.2.3 The Function ̟ 2 Bp/A and the Asymptotic Lorentz Factor γ∞

An important combination of the field line constants is the ‘Michel’s magnetization

parameter’ σM(A) = AΩ2/ΨAc3, already defined in Eq. (72). In terms of σM, and

using Eqs. (68), (69) and (70), we may write the exact expression

μ − ξγ

μ
=
(

σM

μ

)(
−Bφ

E

)(
Bp̟

2

A

)

(81)

The left-hand side represents the Poynting-to-total energy flux. As long as the

flow is Poynting dominated (γ ≪ μ), this ratio is close to unity. This continues to

be the case in the neighborhood of the fast magnetosonic surface, where γ ≈ μ1/3

(e.g., Camenzind [11]).12 As a result, the superfast regime of the flow is the only

place where a transition from a Poynting- to a matter-dominated flow is possible. In

this regime, and for extremely relativistic flows, the term (−Bφ/E) is very close to

unity.13 Hence, Eq. (81) gives a simple relation between the Lorentz factor and the

function Bp̟
2/A:

μ − γ

μ
≈

σM

μ

Bp̟
2

A
. (82)

Suppose that the value of the function Bp̟
2/A near the fast surface is

(Bp̟
2/A) f . Since γ ≪ μ at this point, Eq. (82) implies that the constant of motion

σM/μ ≈ 1/(Bp̟
2/A) f .

12 For a cold flow (as it is practically the case near the fast magnetosonic surface) the fast waves

have phase velocities(ωco/kco)2 = v2
A, as measured in the comoving frame, with v2

A/(1−v2
A/c2) =

B2
co/4πρ0 (Appendix). In the super-Alfvénic regime where the fast surface is located, the azimuthal

component of the magnetic field dominates over the poloidal part, and |Bφ | ≈ E = x Bp .

So, the comoving magnetic field is Bco ≈ x Bp/γ . Thus (ωco/ckco)2
[

1 − (ωco/ckco)2
]−1 ≈

x2 B2
p/4πρ0c2γ 2. At the fast surface, one of the two fast waves propagating along V p is static

(zero phase velocity) in the central object’s frame. Equivalently ωco/kco = Vp ⇔ (γ Vp/c)2 ≈
x2 B2

p/4πρ0c2γ 2 or γ 3 ≈ γ x2/M2 ≈ μ .
13 The requirement that the Lorentz invariant B2 − E2 > 0, using E = x Bp , gives B2

φ/E2 >

1 − 1/x2. In addition, Eq. (60) gives Vφ/c = x + (Vp/c)(Bφ/Bp), and the condition Vφ ∼> 0

implies −Bφ/E ∼< c/Vp . Thus, (1 − 1/x2)1/2 < −Bφ/E ∼< c/Vp . A careful analysis gives

the approximate expression −Bφ/E ≈ [(1 − 1/x2)/(1 − 1/γ 2)]1/2, for x ≫ 1 (see Eq. (13) in

Vlahakis [57]).
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Denoting with δℓ⊥ the distance between two neighboring poloidal field lines

A and A + δA, magnetic flux conservation implies Bp̟
2 = (̟/δℓ⊥)δA. Thus,

a decreasing Bp̟
2 – and hence, from Eq. (82), an accelerating flow – corre-

sponds to poloidal field lines expanding in a way such that their distance δℓ⊥
increases faster than ̟ . How fast the field lines expand is determined by the trans-

field force-balance equation; thus, Eq. (75) indirectly determines the flow accel-

eration. Since the available solid angle for expansion of the field lines is finite,

there is a minimum value of the Bp̟
2/A function. The field lines asymptoti-

cally have a shape z ≈ z0(A) + ̟/ tan ϑ(A), where ϑ(A) is their opening angle

(Vlahakis [57]). Differentiating the latter equation we get a decreasing function

Bp̟
2/A =

(

Aϑ ′/ sin ϑ − Az′
0 sin ϑ/̟

)−1
, reaching a minimum value sin ϑ/Aϑ ′

at ̟ ≫ z′
0 sin2 ϑ/ϑ ′. Since the factor sin ϑ/Aϑ ′ is ∼ 1, the minimum value of the

Bp̟
2/A function is ∼ 1, corresponding to14

μ − γ∞

μ
≈

σM

μ

(
Bp̟

2

A

)

∞
≈

(Bp̟
2)∞

(Bp̟ 2) f

∼
σM

μ
∼

1

(Bp̟ 2/A) f

. (83)

Equivalently, the asymptotic Lorentz factor is γ∞ ∼ μ − σM, and the asymptotic

Poynting-to-mass flux ratio is ∼ σMc2.

Another interesting connection with the boundary conditions near the source can

be found, by noting that, as long as |Bφ| ≈ E = x Bp, Bp̟
2/A ≈ 2|I |/AΩ .

Thus, (Bp̟
2/A) f ≈ 2|I | f /AΩ , and since |I | remains practically constant of

motion inside the force-free subfast regime, (Bp̟
2/A) f ≈ 2|I |i/AΩ , and μ/σM ≈

2|I |i/AΩ . Hence, Eq. (83) implies a direct connection of the acceleration efficiency

and the asymptotic Lorentz factor to the ejection characteristics

μ − γ∞

μ
≈

AΩ

2|I |i

(
Bp̟

2

A

)

∞
∼

AΩ

2|I |i
, γ∞ ∼ μ

(

1 −
AΩ

2|I |i

)

(84)

Summarizing, the acceleration mechanisms are as follows:

1. The pressure-gradient force fP‖ that works in the mildly relativistic regime and

gives velocities of the order of the sound speed.

2. The magnetocentrifugal mechanism that gives velocities of the order of the initial

Keplerian speed.

3. In case of relativistic initial temperatures, i.e., if ξi is not very close to unity, the

temperature force fT ‖ gives final Lorentz factor ξi .

14 The only exception to this general result is to have asymptotically (μ − γ )/μ ≪ σM/μ in

some finite solid angle regions, combined with other regions with bunched field lines [in which

Bp̟
2 ≫ A and (μ − γ )/μ ≫ σM/μ]. Note also that the most general asymptotic field line

shape slightly deviates from straight lines, resulting in a logarithmic acceleration (Chiueh et al.

[13]; Okamoto [41]; Vlahakis [57]). However, this acceleration can happen in exponentially large

distances and hence is physically irrelevant.
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4. The magnetic acceleration that is based on the decline in the poloidal current

|I | = (c/2)̟ Bφ and gives final Lorentz factors at most ∼ μ − σM ∼ μ −
μAΩ/2|I |i .

2.2.4 Collimation

The projection of Eq. (76) in the direction perpendicular to the poloidal flow, i.e.,

along n̂ ≡ E/E = − cos ϑ ˆ̟ + sin ϑ ẑ, gives the transfield force-balance equation

fC⊥ + f I⊥ + fP⊥ + fE⊥ + fB⊥ = 0 ,

where the subscript ⊥ denotes the vector component along n̂. The various terms are

as follows:

– The azimuthal centrifugal term

fC⊥ = −ξγ 2ρ0

V 2
φ

̟
cos ϑ = −

B2
p

4π̟

(
MVφ

Vp

)2

cos ϑ .

– The rest of the inertial force along n̂

f I⊥ = −γ 2ρ0ξ n̂ · [(V · ∇) V ] − fC⊥ = −
B2

p

4πR
M2

is the poloidal centrifugal term.

– The pressure-gradient force along n̂

fP⊥ = −n̂ · ∇ P .

– The ‘electric field’ force

fE⊥ =
1

8π̟ 2
n̂ · ∇

(

̟ 2 E2
)

−
E2

4πR
.

– The ‘magnetic field’ force along n̂

fB⊥ = −
1

8π̟ 2
n̂ · ∇

(

̟ 2 B2
)

+
B2

p

4πR
−

B2
p

4π̟
cos ϑ .

The total electromagnetic force in the transfield direction ( fE⊥ + fB⊥) can be

decomposed as

−
1

8π̟ 2
n̂ · ∇

[

̟ 2
(

B2 − E2
)]

︸ ︷︷ ︸

fE M1

+
B2

p(1 − x2)

4πR
︸ ︷︷ ︸

fE M2

−
B2

p

4π̟
cos ϑ

︸ ︷︷ ︸

fE M3

(85)
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Altogether, they give the following form of the transfield force-balance equation:

B2
p

4πR

(

M2 + x2 − 1
)

= −
1

8π̟ 2
n̂ · ∇

[

̟ 2
(

B2 − E2
)]

−
B2

p

4π̟
cos ϑ −

B2
p

4π̟

(
MVφ

Vp

)2

cos ϑ − n̂ · ∇ P . (86)

(Using Eqs. (67), (68), (69), (70) and, the latter gives Eq. (75), a second-order partial

differential equation for A.)

The terms on the right-hand side of Eq. (86) are recognized as fE M1, fE M3, fC⊥,

and fP⊥, respectively. The left-hand side consists of the sum of − f I⊥ and − fE M2

terms that both are proportional to the curvature of the poloidal field lines.

In the sub-Alfvénic regime (M2 + x2 − 1 < 0) the left-hand side of Eq. (86) has

a sign opposite to R. As explained below, this means that the larger the forces that

point away from the rotation axis the faster the collimation!15 Since the inertial force

is negligible, the requirement that the remaining forces cancel each other determines

the curvature radius. Besides the pressure-gradient component that is expected to

play a significant role only very close to the outflow base, the right-hand side of

Eq. (86) consists of the negative terms fE M3, fC⊥, and the term fE M1. Exactly at

the Alfvénic surface the algebraic sum of these three terms should vanish (since the

left-hand side of Eq. (86) vanish; this is the Alfvénic regularity condition). Thus, the

term fE M1 is positive. In the sub-Alfvénic part, for a collimating flow (R > 0), it is

| fE M3 + fC⊥| > fE M1. The larger the | fE M3|, | fC⊥| forces that point away from the

axis, the smaller the curvature and the faster the collimation.

In the super-Alfvénic part the positive term fE M1 takes over (since the terms

related to the poloidal magnetic field as well as the centrifugal force become smaller

than the azimuthal magnetic field term16) and the collimation continues due to this

term. By employing the comoving magnetic field Bco = (B2 − E2)1/2 ≈ |Bφ|/γ , the

force fE M1 = −(Bco/4π̟ )n̂ ·∇(̟ Bco) ∼ B2
φ/4π̟γ 2 (assuming |n̂ ·∇| ∼ 1/̟ ).

Thus, Eq. (86) implies (using |Bφ| ≈ x Bp)

̟

R
≤

1

γ 2

x2

x2 + M2 ∼<
1

γ 2
.

This is a well-known result, meaning that the field lines are difficult to bend when

the flow is relativistic, because (1) the electric force almost cancel the transfield

component of the magnetic force and (2) the effective matter inertia is larger (e.g.,

Bogovalov [7]). The result is negligible curvature, ̟/R ≈ 0 (e.g., Chiueh et al.

15 The situation is similar to a steady, hydrodynamic wind, where the stronger gravity contributes

to the faster acceleration in the sub-sonic regime.
16 See, however, the analysis of cases where the term | fE M3 + fC⊥| is comparable, or even

dominates over the fE M1 term, in Komissarov et al. [31]. A detailed study on the flow shape in

connection with the external pressure that confines the jet, the spatial growth of the Lorentz factor,

and the causality across the jet, can also be found in that paper.



Output from MHD Models 91

[14]), and only close to the origin where the Lorentz factor is relatively small is

collimation efficient. The relation ̟/R ∼< 1/γ 2, however, does not mean that the

field lines are exactly straight. For example, for a Lorentz factor γ ∝ ̟ β , the shape

of the poloidal field lines could be z ∝ ̟ α , with α ∼ β + 1.

On the other hand, even if the poloidal lines are exactly straight (̟/R = 0),

acceleration is possible. The most general line shape with zero curvature is z =
z0(A) + ̟/ tan ϑ(A), corresponding (as we explained in Sect. 2.2.3) to an acceler-

ating flow.17

2.3 Quasi-monopolar Solutions

Michel’s [40] solution, the first try to obtain relativistic MHD solutions, is a gener-

alization of the Weber and Davis [63] classical paper. Exactly as the Weber–Davis

model, it applies only to the equatorial plane and ignores the transfield force balance.

By assuming a cold flow, a monopole magnetic field A = B0̟
2
0 (1 − cos θ ) ⇔

B p = B0(̟0/r )2 r̂ , and by restricting the analysis to the plane θ = π/2 (when

̟ |∇ A|/A = 1), Eq. (74) becomes

[

σMμ(1 − x2
A) − μx2U

]2 − x2
[

σMμ(1 − x2
A) − μx2

AU
]2

[

σM(1 − x2) − x2U
]2

= 1 + U 2 , (87)

where U = γ Vp/c = σM M2/x2 is the proper velocity (see Eq. (71)). Equation (87)

can be solved for the function U (x), i.e., the flow speed as function of the distance,

if the constants of motion σM, μ, and xA are known. From the requirement to have

U → 0 in the limit x → 0, we get a relation between the two constants μ(1− x2
A) =

1, so only σM, μ are free. For each μ we can find the solution U (x) that starts

from the point U (x = 0) = 0. For small enough values of μ the solution does not

extend to infinity (see the curve ‘μ < μc’ in Fig. 10). The smaller μ for which the

solution goes to x → ∞ is the critical value μc =
(

1 + σ
2/3
M

)3/2

. For this value the

asymptotic proper velocity is U∞ = σ
1/3
M , and since for σM ≫ 1 the critical value is

μc ≈ σM, it is U∞ ≈ μ1/3. For larger values of μ the solution extends up to infinity,

but the asymptotic velocity is smaller than σ
1/3
M (see Fig. 10). The critical solution

is the ‘minimum torque’ solution that represents the appropriate physical solution

(Michel [40]). The solution U∞ = σ
1/3
M is a double root of Eq. (87) at x → ∞,

meaning that the fast magnetosonic surface is located at infinity.

Although Michel’s solution was the first step toward understanding relativis-

tic magnetized flows, we should always remember that it is a solution if the

Bernoulli equation alone, and the important transfield force-balance equation is

17 This shows how the arguments of Chiueh et al. [14] against the efficient magnetic acceleration

in relativistic outflows can be circumvented (see Vlahakis [57], Komissarov et al. [30, 31] for more

detail).
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Fig. 10 Michel’s solution for σM = 5000. The critical value for μ is μc =
(

1 + σ
2/3
M

)3/2

=
5075.67 and the requirement to have γ → 1 for x → 0 gives xA = 0.9998. In the figure three

contours are shown: the critical μ = μc and the μ = μc − 5 < μc, μ = μc + 50 > μc. The

asymptotic Lorentz factor for the critical solution is σ
1/3
M = 17.1

simply ignored. The finding that the asymptotic Lorentz factor is just μ1/3, much

smaller than the maximum value γ∞ = μ that corresponds to matter-dominated

flow, is a direct consequence of the assumed field line shape. According to the

analysis of Sect. 2.2.3, since the function Bp̟
2/A is by assumption constant, the

magnetic acceleration is expected to be completely inefficient. This does not mean

that the magnetic acceleration is in general inefficient and the Michel’s scaling

γ∞ = μ1/3 is not a general result.

Beskin et al. [5] examined deviations from the monopole magnetic field. They

found that the fast magnetosonic point is moved at finite distance; however, the

acceleration was still inefficient. This result agrees with the analysis of Sect. 2.2.3.

The reason of the magnetic acceleration being inefficient is not the position of the

fast point alone. Definitely the main part of the magnetic acceleration happens

from that point downstream, so for solutions with the fast point at infinity there

is no chance to have efficient acceleration. However, even in cases where the flow
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becomes superfast at finite distance, the function Bp̟
2/A should not be forced

to be constant. In the perturbations around the monopole solution, this function is

by construction roughly constant, since the zeroth-order solution is the monopole

one in which Bp̟
2 is exactly constant. In fact there is a very slow, logarithmic

acceleration in the superfast regime, as Lyubarsky and Eichler [36] showed. This

acceleration could give asymptotically γ∞ = μ, but over completely unrealistic

(exponentially large) distances.

2.4 The Prescribed Field Line Shape

In principle, if we knew the field line shape, the Bernoulli equation (74) yields the

flow velocity. The Bernoulli equation is in fact quite easy to solve, since it is alge-

braic. The only difficulty is to cross the slow and fast magnetosonic points (where

the solution becomes double) in a similar way as in Michel’s solution where the

acceptable solution becomes double at infinity. In the superfast regime the simple

expression (82) actually gives directly the flow speed.

For this reason, many people assumed a prescribed field line shape and then con-

centrated on solving the Bernoulli equation alone, by ignoring the transfield equa-

tion. Michel’s solution belongs to this category. More sophisticated line shapes were

assumed (e.g., Takahashi et al. [50]; Takahashi and Shibata [49]; Fendt and Greiner

[19]; Daigne and Drenkhahn [17]; Fendt and Ouyed [20]), without, however, to

check a posteriori the force-balance in the transfield direction and the induced error.

Although these analyses are useful in providing information on how the flow reacts

in various field line shapes, further work is necessary in order to find the line shape

that is consistent with the solution of the Bernoulli equation.

2.5 Asymptotic Solutions

Another way to get useful insights on relativistic MHD is to analyze the asymptotic

behavior of the flows. We already used in Sect. 2.2.3 a simplified asymptotic form of

the Bernoulli equation. More extensive analysis include the work of Heyvaerts and

Norman [27] for nonrelativistic flows, its relativistic generalization by Chiueh et al.

[13], and more recently, the works by Tomimatsu and Takahashi [51], Heyvaerts and

Norman [28], and Vlahakis [57]. We note, however, that asymptotic analysis of the

highly nonlinear system of the MHD equations always involves a risk. The dropped

terms – either terms of order 1/x or curvature radius terms – sometimes surprisingly

modify the full numerical solutions; thus, we thought it is better not to analyze

in detail the previously cited works, but instead concentrate to the only available

exact (by means of solving the full system of equations, the transfield force-balance

included) semianalytic work, valid from the base of the flow to infinity (contrary to

asymptotic studies), which is the r self-similar model.
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2.6 The r Self-similar Model

2.6.1 Model Construction

To obtain semianalytic solutions of the highly nonlinear system of Eqs. (74) and

(75), it is necessary to make additional assumptions: in particular, we look for a

way to effect a separation of variables.

The most complicated expression is the one for Bφ (Eq. (68)). In view of the

importance of the azimuthal field component, which plays a crucial and varied role

as part of the magnetic pressure gradient, magnetic tension, and centrifugal accel-

eration terms in the momentum equation, the only realistic possibility of deriving

exact semianalytic solutions is to assume that the M = const , G = const , and

x = const surfaces coincide, i.e., M = M(χ ) , G = G(χ ) , x = x(χ ) (Vlahakis

[56]). We aim to find appropriate forms for the functions of A such that expressions

(74) and (75) become ordinary differential equations. From an inspection of the

Bernoulli equation (74) we conclude that, in order to separate the variables χ and

A and get a single equation that only has a χ dependence, it is necessary to assume

that the (∇ A)2 term is a product of a function of A times a function of χ . As A is a

function of ̟/G(χ ) (see Eq. (66)), there must exist functions H1 ,H2 such that

[

∇
(̟

G

)]2

= H1

(̟

G

)

H2(G) .

There always exist the trivial possibilities G ∝ r in spherical coordinates

(r , θ , φ) [A = A(θ ) when the field is radial], and G = G(̟ ) (A = A(̟ ) for a

cylindrical field), which are not of interest. After some algebra one can prove that the

only nontrivial case is to have G = G(θ ), i.e., χ = θ . It thus appears that, to obtain

an semianalytic adiabatic solution, it is necessary to assume r self-similarity.18

The remaining assumptions for constructing an r self-similar solution are that the

cylindrical distance (in units of the Alfvénic lever arm), the poloidal Alfvénic Mach

number, and the relativistic specific enthalpy are also functions of θ only: x = x(θ ),

M = M(θ ), ξ = ξ (θ ) (with the result for ξ following from the nonlinearity of the

expression for M ; see Eq. (73)).

Following the algorithm described in Vlahakis and Tsinganos [61], we change

variables from (r , θ ) to (̟A , θ ) and obtain the forms of the integrals under the

assumption of separability in ̟A and θ in Eqs. (74) and (75). The results are19

18 For nonadiabatic flows there exist, in principle, other solutions as well, exactly as in the nonrel-

ativistic case, (e.g., Meliani et al. [39]). Here, however, we concentrate on adiabatic flows where

the total energy-to-mass flux ratio is conserved.
19 The nonrelativistic limit of our model is not the generalization of the Blandford and Payne [6]

model, examined, e.g., in Vlahakis et al. [62]. The nonrelativistic limit can, however, be obtained

from the analysis of Vlahakis and Tsinganos [61]: it corresponds to the third line of their Table 3

(setting x1 = F − 2 , x2 = F − 5/2 , E2 = C1 = D2 = 0, and ignoring gravity, so it is possible to

assume a polytropic equation of state).
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σM , μ , xA , q = const , A =
B0̟

2
0

F

(
̟A

̟0

)F

, (88)

where B0 and ̟0 are some reference magnetic field and distance, chosen for adi-

mensionalization, while F is the only parameter of the model (besides Γ that is

always given [4/3 or 5/3 depending on the temperatures]).

The r self-similar character of the poloidal field line shape is shown in Fig. 11.

The physical quantities can be recovered using

B

B0(̟A/̟0)F−2
=

sin θ

G2 sin (θ − ϑ)
b̂ −

μx4
A(1 − G2)

FσMx(1 − M2 − x2)
φ̂ , (89)

E

B0(̟A/̟0)F−2
=

xA sin θ

G sin(θ − ϑ)
n̂ , (90)

V

c
=

FσM M2 sin θ

γ ξ x2 sin(θ − ϑ)
b̂ +

xAμ(G2 − M2 − x2)

γ ξG(1 − M2 − x2)
φ̂ , (91)

γ =
μ

ξ

1 − M2 − x2
A

1 − M2 − x2
, ρ0 =

B2
0 x4

Aξ

4πc2 F2σ 2
M M2

(
̟A

̟0

)2F−4

, (92)

P =
B2

0

4π

Γ − 1

Γ

x4
A

F2σ 2
M

ξ (ξ − 1)

M2

(
̟A

̟0

)2F−4

, (93)
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Fig. 11 Sketch of r self-similar field lines in the meridional plane. For any two field lines A1 and

A2, the ratio of cylindrical distances for points corresponding to a given value of θ is the same for

all the cones θ = const : ̟1/̟2 = ̟A1/̟A2 = (A1/A2)1/F
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where the functions x(θ ), G(θ ), ϑ(θ ), M(θ ), ξ (θ ) are the solution of Eqs. (73),

(74), and (75). In particular, Eq. (73) remain the same. Equation (74) gives

μ2

ξ 2

G4
(

1 − M2 − x2
A

)2 − x2
(

G2 − M2 − x2
)2

G4
(

1 − M2 − x2
)2

= 1 +
F2σ 2

M M4 sin2 θ

ξ 2x4 cos2 (θ − ϑ)
. (94)

Using for the slope of the poloidal field line tan ϑ = (∂̟/∂z)A with ̟ = ̟AG

and z = ̟/ tan θ we find the equation that connects the angle ϑ with the derivative

of G

dG2

dθ
= −

2G2 sin ϑ

sin θ sin (θ − ϑ)
. (95)

The last equation that closes the system is the transfield force-balance equation

(75) that becomes

d

dθ

[
1 − M2 − x2

G tan (θ − ϑ)

]

=
(F − 1)x4

Aμ2x2

F2σ 2
MG sin2 θ

[
1 − G2

1 − M2 − x2

]2

−
x4

Aμ2x2

F2σ 2
M M2G sin2 θ

[
G2 − M2 − x2

1 − M2 − x2

]2

−
M2 + Fx2 − F + 1

G sin2 (θ − ϑ)

+
2(Γ − 1)(F − 2)ξ (ξ − 1) x4

Γ F2σ 2
MG M2 sin2 θ

. (96)

The r dependence of all the physical quantities can be inferred from expressions

(89), (90), (91), (92), and (93) on the basis of the known r dependence of ̟A (∝ r ;

since ̟A = ̟/G(θ ) = r sin θ/G(θ )). This is a general characteristic of r self-

similar models. We may say that r self-similar solutions correspond to boundary

conditions in a conical surface (θ = θi of the form Br = C1r F−2, Bφ = −C2r F−2,

Vr = C3, Vθ = −C4, Vφ = C5, ρ0 = C6r2F−4, P = C7r2F−4, with constant C1,. . . ,C7.

If we start the integration from a cone θ = θi , the separability of the equations

means that in a subsequent cone θ = θi + dθ the quantities have the same form,

with different, however, C1,. . . ,C7.

The parameter of the model F controls the initial current distribution: −̟ Bφ =
C2 sin θi r F−1 is an increasing or decreasing function of r for F > 1 or < 1; see

Vlahakis and Königl [58] for details; we note, however, that the F > 1 solutions

correspond to zero current near the rotation axis, while the F < 1 to an infinite cur-

rent at r → 0, like the Blandford and Payne [6] nonrelativistic solution. Despite the

assumed form of the boundary conditions, the assumption that gravity is negligible,

and the absence of intrinsic scale, r self-similar remain the only self-consistent adi-

abatic relativistic MHD solutions.

The model described above has been analyzed in Vlahakis and Königl [58, 59] in

the context of GRB outflows and in Vlahakis and Königl [60] in the context of AGN
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outflows. It is the generalization to a ‘hot’ (ξ > 1) gas of the ‘cold’ r self-similar

wind solution found independently by Li et al. [34] and Contopoulos [16].20

2.6.2 A Sample Relativistic Solution

We now present a specific example of an exact solution of the MHD equations in

order to compare with the analysis of Sect. 2.2. It is easier to focus on the magnetic

effects when the flow is practically cold; thus, we choose to analyze the solution b

in Vlahakis and Königl [58].21 Figure 12 shows the poloidal field-streamline shape

in logarithmic scale. The plotted curve holds for every poloidal field line (i.e., for

every value of A); however, as we move to lines away from the rotation axis (i.e.,

at larger A) the Alfvénic lever arm (̟A ∝ A1/F ) increases, so both ̟ and z scale

according to ̟ = ̟AG(θ ) and z = ̟AG(θ )/ tan θ .

In the main part of the flow the line shape is parabolic z ∝ ̟ 2, while asymp-

totically it becomes cylindrical (the slope d ln z/d ln ̟ progressively increases near

̟/̟A ∼ 104, as shown in Fig. 12). The half-opening angle of the outflow is shown

in Fig. 13. The angle ϑ = arctan(V̟/Vz) that the poloidal flow makes with the
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Fig. 12 Poloidal field-streamline shape in logarithmic scale

20 The r self-similarity was first employed by Bardeen and Berger [3], who examined purely HD

flows, but it has become well known only after Blandford and Payne [6] used it to construct a

nonrelativistic MHD disk-wind model. The latter work has subsequently been generalized by many

authors (see Vlahakis et al. [62] and references therein).
21 For this solution the parameters/boundary conditions are F = 1.01, x2

A = 0.9999, σM = 5000,

q = 0, while the Alfvén surface is located at polar angle θA = 35o. From the requirement that

the flow crosses smoothly the Alfvén surface and also it continues to large distances without being

decelerated (this is the magnetic nozzle effect) we find μ = 9997.4, and the half-opening angle of

the poloidal lines at the Alfvén surface ϑA = 17.3o.
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Fig. 13 Half-opening angle of the poloidal flow, ϑ = arctan(V̟ /Vz)

rotation axis, initially has the value 44.6o, and decreases, for the main part of the

flow, as ϑ ∝ ̟−1, a characteristic of the parabolic line shape. Near ̟/̟A ∼ 104 it

decreases faster than ∝ ̟−1, approaching the asymptotic value ≈ 0 when the flow

becomes cylindrical.

Figure 14 shows x = ̟Ω/c and M = (γ Vp/Bp)
√

4πρ0ξ (the light surface

radius and the Alfvénic Mach number, respectively) as well as the ‘fast magne-

tosonic proper Mach number’ M f ≡ γ Vp/U f , where U f is the larger solution of

the quadratic

(
U f

c

)4

−
(

U f

c

)2 (
U 2

s

c2
+

B2 − E2

4πρ0ξc2

)

+
U 2

s

c2

B2
p

(

1 − x2
)

4πρ0ξc2
= 0 . (97)

The point where x = 1 corresponds to the light surface, which practically coin-

cides with the Alfvén surface ̟/̟A = 1. At the Alfvén surface x = xA and

M = (1 − x2
A)1/2. The point M f = 1 (at ̟/̟A ≈ 22.6) is the fast magnetosonic

point.22 It is seen that for the main part of the flow M ≈ M f . Since for cold flows

the solution of Eq. (97) is U 2
f = (B2 − E2)/(4πρ0) and M2 = 4πρ0(γ Vp/Bp)2, this

means that B2 − E2 ≈ B2
p. Equivalently, since B2 − E2 ≈ B2

φ/γ 2 ≈ B2
p(x2/γ 2), the

Lorentz factor increases almost linearly with the cylindrical distance γ ∼ x (this is

indeed the numerical result as we discuss below).

22 The function M f shows where the fast magnetosonic surface is located. Besides that, M f is

related to the Mach cone of the propagation of fast magnetosonic waves in the superfast regime.

For practically cold flow, this cone has half-opening angle arctan(M2
f −1)−1/2 (the cone’s symmetry

axis coincides with the poloidal field line).
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Fig. 14 Cylindrical distance in units of the ‘light surface’ distance x and the Mach numbers M

and M f

Figure 15 shows the two components of the magnetic field. It is seen that close to

the base the poloidal part dominates, near the Alfvén surface the two parts become

comparable, while at large distances the azimuthal part dominates. The two compo-

nents scale as Bp ∝ 1/̟ 2 and −Bφ ∝ 1/̟ . However, the small deviation of the

product ̟ Bφ from a constant is connected to the acceleration, since the Poynting-

to-mass flux ratio (over c2 for adimensionalization) is −̟Ω Bφ/ΨAc2; see Fig. 16.

Also the deviation of Bp̟
2 is shown in Fig. 17 and plays an important role for the
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Fig. 15 Poloidal and azimuthal components of the magnetic field
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acceleration (since −Bφ ≈ x Bp, the quantities ̟ Bφ and Bp̟
2 are proportional to

each-other).

Figure 16 shows the two parts of the total energy-to-mass flux ratio, see Eq. (62).

The matter part γ is almost linearly increasing with the cylindrical distance (γ ∝
̟ ) in expense on the electromagnetic part −̟Ω Bφ/ΨAc2. The small deviation

of the ̟ Bφ results in significant acceleration. A variation from −̟Ω Bφ/ΨAc2 =
μ near the base to ∼ μ/2 asymptotically corresponds to acceleration up to γ ∼
μ/2, leading to equipartition between matter and electromagnetic energy fluxes at

large distances. As we discussed in Sect. 2.2.3, the acceleration efficiency depends

on the value of Bp̟
2/A at the fast magnetosonic surface. Since this value is 2

(see Fig. 17) we expect (μ − γ∞)/μ ≈ 1/2 (see Eq. (83)), and this is indeed the

case. Figure 17 also verifies the results of Sect. 2.2.3. In particular it shows that the

analytic expression (82) is almost exact in the superfast regime.

Figure 18 shows that the electric field is slightly less than the absolute value

of the azimuthal magnetic field. To an almost perfect accuracy, their difference is

given by the approximate expression −Bφ/E ≈
√

(1 − 1/x2)/(1 − 1/γ 2), valid in

the superfast regime (see footnote 13).

The poloidal and azimuthal parts of the flow velocity are shown in Fig. 19. The

azimuthal part has an initial value of the order of ̟iΩ and keeps increasing inside

the roughly corotating sub-Alfvénic regime, while at large distances decreases as

∝ 1/̟γ from angular momentum conservation.

Figure 20 shows the various force components along the poloidal flow. It is seen

that the magneto-centrifugal term fC‖ dominates near the base of the flow, but the

magnetic force fB‖ soon takes over (for non- or mildly relativistic flows the regime
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Fig. 16 Lorentz factor and the quantity −̟Ω Bφ/ΨAc2 = μ − ξγ , representing the Poynting-to-

mass flux ratio (over c2). These are the two parts of the total energy-to-mass flux ratio (over c2);

their sum equals the field line constant μ
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where the magneto-centrifugal mechanism dominates is expected to be larger). In

response to the accelerating forces, the inertia terms − f I‖ = γ 2ρ0ξVp∂Vp/∂ℓ

and − fG‖ = γρ0ξV 2
p ∂γ /∂ℓ are positive, resulting in an accelerating flow. As long

as the flow remains mildly relativistic the term − f I‖ dominates, while at large dis-

tances the − fG‖ is the main inertial force in the V p direction.
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Fig. 17 Function Bp̟
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The force components in the transfield direction on the poloidal plane (i.e., along

the direction of the electric field) are shown in Fig. 21. The force balance in this

direction determines the poloidal field line shape and indirectly the acceleration, as

we discussed in Sect. 2.2.4. In the sub-Afvénic regime the force − fE M3 dominates,

while in the super-Afvénic part of the flow the force fE M1 takes over. However,

the − fE M3 part remains comparable to the fE M1; thus, it is not a correct approxima-
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Fig. 21 Force density components along the electric field direction (multiplied with ̟ 3). The
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tion to ignore the poloidal field terms even at large distances. For ̟/̟A < 5 × 102

the centrifugal force is negligible. As a result, the difference between the fE M1

and − fE M3 terms determines the poloidal curvature (this difference equals the

| fE M2 + f I⊥| term. For ̟/̟A > 5 × 102, however, the centrifugal term − fC⊥
is nonnegligible and equals the difference between the fE M1 and − fE M3 terms

(the curvature term | fE M2 + f I⊥| is much smaller, a characteristic of cylindrical

asymptotics).
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Figure 22 shows the curvature of the poloidal field lines. As expected from the

analysis of Sect. 2.2.4, ̟/R < 1/γ 2. However, the approximation ̟/R ∼ 1/γ 2

does not hold, because the force fE M3 related to the poloidal field is non-negligible

as we discussed in the previous paragraph.23

The solution that we analyzed above was presented by Vlahakis and Königl [58]

in the context of GRB outflows. In that paper the reader could find ‘hot’ solutions as

well; however, the main characteristics of the outflows remain the same. One could

also find solutions of the same model in the context of AGN outflows in Vlahakis

and Königl [60] and in the cold subcase in Li et al. [34] Contopoulos [16].

2.7 Simulations

Komissarov et al. [30] have taken a major step toward solving the numerical prob-

lems associated with relativistic magnetized flows, simulating special relativistic,

axisymmetric, ideal MHD flows with asymptotic Lorentz factors up to ∼ 15. In a

more recent work Komissarov et al. [31] they simulate flows that reach asymptotic

Lorentz factors up to 300. These solutions are in a very good agreement with the

presented analytical results, as can be seen in the corresponding discussion sections

(Sect. 5 in Komissarov et al. [30] and in Komissarov et al. [31]).

3 Conclusion

Summarizing, it is important to note that in order to solve for the acceleration it is

absolutely necessary to solve for the poloidal field line shape as well. The Bernoulli

and transfield force-balance equations are interrelated and we cannot solve them

separately, especially in the superfast regime.

We made qualitative arguments about the various acceleration and collimation

mechanisms. We could briefly review the basic results that are confirmed by all

known exact solutions of the MHD equations. The acceleration mechanisms are as

follows:

• Pressure-gradient force giving velocities of the order of the sound speed.

• Magneto-centrifugal acceleration which transforms part of the Poynting flux to

matter energy flux and gives velocities of the order of the azimuthal speeds near

the base of the flow.

• Temperature (or enthalpy) gradient, resulting in matter kinetic energies of the

order of the initial enthalpy (this mechanism works only in cases where the tem-

peratures are relativistic).

• Magnetic acceleration. In nonrelativisitc flows this mechanism gives flow speeds

at the fast magnetosonic surface that are already
√

1/3 of the maximum possible

23 In the case of negligible poloidal magnetic field (this is, for example, the case of an initial

super-Alfvénic flow) it is ̟/R ≈ 1/γ 2 (see Fig. 2b in Vlahakis and Königl [59]).
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velocity (the maximum velocity corresponds to the full transfer of the electro-

magnetic energy to the matter, meaning that V 2/2 equals the total energy-to-

mass flux ratio). The acceleration may continue after the fast surface reaching

efficiencies even close to 100%. In relativistic flows the main part of the mag-

netic acceleration is realized from the fast magnetosonic surface downstream.

The asymptotic Lorentz factor depends on the initial total energy-to-mass flux

ratio μc2 and the value of the Michel’s magnetization parameter σM. According

to the discussion in Sect. 2.2.3, an analytic expression for the asymptotic Lorentz

factor is γ∞ ∼ μ − σM. (Possible acceleration to γ∞ → μ can only happen in

exponentially large – and thus physically irrelevant – distances.) Another expres-

sion connecting the asymptotic value γ∞ with the conditions near the origin of

an initially Poynting-dominated flow is γ∞ ∼ μ(1 − AΩ/2|I |i ). The asymptotic

Poynting-to-mass flux ratio is ∼ σMc2 ≈ μc2 AΩ/2|I |i .

Regarding the collimation, in nonrelativistic flows the J p×Bφ/c force can easily

collimate the flow to more or less cylindrical geometries. It is relatively inefficient in

relativistic flows in comparison to nonrelativistic ones; however, it is still possible.

Practically, the main part of the confinement happens closer to the base. At large

distances the poloidal curvature radius satisfies ̟/R ∼< 1/γ 2, an relation that is

consistent with parabolic line shapes z ∝ ̟ α . In these cases the Lorentz factor

scales as γ ∝ ̟ α−1.

Semianalytic results as well as simulations of the problem agree very well with

the simple analytical scalings described in this chapter (relativistic and nonrelativis-

tic). We can say that our knowledge on the theory of MHD is at a level sufficient to

understand global properties of magnetized flows.

Appendix: Alfvén and Magnetosonic MHD Waves

Suppose that we have obtained a solution of the axisymmetric, relativistic, ideal-

MHD equations (51), (52), (53), (54) and (55). If we consider localized, fast varying,

axisymmetric disturbances, then we may assume that the unperturbed solution is

uniform and time independent and neglect all its space and time derivatives. We

may then look for perturbations having a Fourier dependence exp[i(ωt − k · r)] =
exp[i(ωcotco − kco · rco)], where by using the Lorentz transformations between the

comoving (rco , tco) and observer’s frame (r , t), we get ωco = γ (ω − k · V ), kco =
k − V

[

γω/c2 − (γ − 1) k · V/V 2
]

.24

It is more convenient to analyze the disturbances in the (comoving) flow frame.

Define a local Cartesian system of coordinates (x , y , z) such that Bco = Bco ẑ, and

kco = kco( ẑ cos θ0 + x̂ sin θ0). After linearizing Eqs. (51), (52), (53), (54) and (55),

we may express all the perturbed quantities in terms of the perturbation δV co. After

some manipulation, we obtain

24 Note that, for axisymmetric disturbances in the observer’s frame, the wavevector k lies in the

meridional plane, but that, nonetheless, the comoving wavevector kco has an azimuthal component.
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⎛

⎝

D11 0 D13

0 D22 0

D13 0 D33

⎞

⎠

⎛

⎝

x̂ · δV co

ŷ · δV co

ẑ · δV co

⎞

⎠ = 0 , where

D11 =
c2

s

c2
sin2 θ0 +

(
v2

A

c2
−

ω2
co

c2k2
co

)(

1 −
v2

A

c2

)−1

,

D13 =
c2

s

c2
sin θ0 cos θ0 ,

D22 =
(

v2
A

c2
cos2 θ0 −

ω2
co

c2k2
co

)(

1 −
v2

A

c2

)−1

,

D33 =
c2

s

c2
cos2 θ0 −

ω2
co

c2k2
co

.

The Alfvén speed can be expressed in terms of the corresponding proper speed

UA, which satisfies

U 2
A ≡

v2
A

1 − v2
A/c2

=
B2

co

4πρ0ξ
. (98)

The square of the proper sound speed is given by

U 2
s = c2 (Γ − 1)(ξ − 1)

(2 − Γ )ξ + Γ − 1
=

c2
s

1 − c2
s /c2

, c2
s = Γ

P

ρ0ξ
. (99)

Besides the trivial entropy wave ωco = 0 (which, however, corresponds to ω �=
0), the dispersion relation | D |= 0 yields the wave modes listed below.

• Alfvén waves: D22 = 0, or ωco/kco = ±vA cos θ0, corresponding to a displace-

ment δV co normal to the {Bco , kco} plane. Transforming the dispersion relation

to the observer’s frame, we get

(

γ
ω − k · V

ck

)2

=

(B · k/k)2

4πρ0ξc2

[

1 −
(

x +
ωBφ

cB · k

)2

−
(

ωBp

cB · k

)2
]

. (100)

• Slow/fast magnetosonic waves: D11 D33 = D2
13, or,

(
ωco

ckco

)4

−
(

ωco

ckco

)2 (
c2

s

c2
+

v2
A

c2
−

c2
s v

2
A

c4
sin2 θ0

)

+
c2

s v
2
A

c4
cos2 θ0 = 0 ,

corresponding to a displacement δV co in the {Bco , kco} plane. In the observer’s

frame, we have
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(

1 −
ω2

c2k2

)−1 (

γ
ω − k · V

ck

)4

−
(

γ
ω − k · V

ck

)2 (
U 2

s

c2
+

B2 − E2

4πρ0ξc2

)

+

U 2
s

c2

(B · k/k)2

4πρ0ξc2

[

1 −
(

x +
ωBφ

cB · k

)2

−
(

ωBp

cB · k

)2
]

= 0 . (101)

An interesting property of the waves, related to the discussion on critical/singular

surfaces of steady-state MHD, is the following: If the component of the flow proper

velocity along the wavevector equals in magnitude, but is opposite in sign, to the

comoving proper phase velocity of the wave, then ω = 0 and the wave is static.

(The converse is also true.) Thus,

ω = 0 ⇔ γ V ·
k

k
= −

ωco/kco
(

1 − ω2
co/c2k2

co

)1/2
. (102)

This statement is easily proved by combining ωco = γ (ω − k · V ) with the

Lorentz invariant ω2
co − c2k2

co = ω2 − c2k2 and solving for ω.

Equation (102) is the generalization of the property of nonrelativistic static waves

V · k + ωco = ω = 0. It is consistent with the result that proper speeds are the

appropriate generalization of ordinary speeds in relativistic theory (e.g., Königl [32].
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Coronal Heating

Alan William Hood

1 The Sun

1.1 Introduction

The Sun is, of course, the only star we can see in detail and the recent space missions

and advances in ground based telescopes means that we can now analyse it in more

detail than ever before. Looking at smaller lengthscales and with higher time and

spectral resolution, it has become clear that there are many phenomena that are still

not clearly understood.

Why should we study the Sun? Firstly, it has a major influence on the Earth, both

its environment and its climate, and predicting space weather will be essential if

manned missions are sent to Mars. Secondly, it is important for astronomy because

if we do not understand the Sun, we cannot understand how stars work. Finally, it is a

laboratory for understanding fundamental plasma processes, which has implications

for understanding the Cosmos.

The structure of the solar interior is illustrated in Fig. 1. There are three main

regions, namely the core, the radiative and the convective zones. The fusion of

hydrogen into helium occurs in the core, which extends out to about a quarter of

the radius of the Sun. Next is the radiative zone where the photons are repeatedly

emitted and absorbed and the wavelengths lengthen from gamma rays to appear at

the surface as visible light. The top of the radiative zone is around 0.7 of the solar

radius and now the temperature gradients are sufficiently steep that convection sets

in. What is clear from surface observations is that the equator rotates faster than the

poles. One of the keys results from helioseismology is that this differential rotation

is constant along constant latitude inside the convection zone. However, the radiative

zone is almost rotating with a constant rate and at the interface between these two

zones is an interface layer called the tachocline where there is a high radial sheer
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Fig. 1 A cutaway showing the nuclear core, the radiative zone and the convection zone in the inte-

rior. The interface layer lies between the radiative and convection zones and is the location where

the solar dynamo operates. The visible surface is the photosphere and above it lie the chromosphere

and the corona

in the rate of rotation. It is thought that the location of the solar dynamo is in this

interface layer.

There are three distinct regions in the atmosphere of the Sun, as illustrated in

Fig. 1. The lowest level is the photosphere, with a temperature of the order of

6,000 K and this extends up to a height of about 5 × 105 m or, as is more commonly

used in Solar Physics, 0.5 Mm. The temperature rises slowly through the chromo-

sphere until there is a rapid rise through a narrow region, known as the transition

region, to the corona where the temperature is somewhat above 106 K.

1.2 History of the Solar Corona

How do we know that the corona is hot? Our information about the solar atmo-

spheres comes from spectroscopic data and interpretation. Below is a potted history

that led to the determination that the corona is hot:
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• 1814 – Fraunhofer interprets the spectrum of the Sun.

• 1820 – Invention of photography.

• 1869 – New emission line discovered in the corona and the element is named

coronium.

• 1875 – Secchi realises that the form of the corona changes during the solar cycle.

• 1908 – Hale discovered magnetic fields in sunspots.

• 1913 – Bohr interpreted the Hydrogen spectrum.

• 1929 – Russell obtained the chemical composition of the Sun by spectroscopic

methods.

• 1940 – Edlen establishes that coronium is a highly ionised known element imply-

ing the corona has a temperature above 106 K.

• 1948 – Biermann and Schwartzchild propose heating by sound waves (they may

heat the chromosphere but not the corona).

• 1952 – Magnetograph invented by Babcock.

• 1962 – Orbiting Solar Observatory Series launched and produced first disk

images of the corona.

There is a substantial amount of material relating to the coronal heating problem in

the literature. One very useful source is the ESA proceedings of SOHO15, a major

international meeting to discuss coronal heating held in 2004 [32]. Virtually all the

contributions are available online, through the ADS service.

1.3 The Solar Corona

Everything in the solar corona is controlled by the local magnetic field. In the pho-

tosphere, the most obvious features of the Sun’s magnetism are the sunspots, the

number of which varies in time over an approximate 11 year cycle due to mag-

netic dynamo action in the solar interior. Sunspots are objects of intense research

and recent observations have thrown up new problems as to their origin, formation

and structure. Figure 2 shows a detailed picture of the central sunspot umbra and

the surrounding penumbra. The magnetic field shows up different structures in the

chromosphere and corona. Using a Hydrogen alpha filter, we can see the plasma at

chromospheric temperatures. The detailed structures also outline the local magnetic

field lines.

In Fig. 3, cool dense structures, known as prominences, are seen in absorption as

thin dark ribbons on the solar disk and in emission as bright structures on the limb.

They are located at typical coronal heights but consist of plasma about 100 times

cooler and about 100 times denser than the surrounding plasma. They are relatively

long-lived (of the order of days to months) and they are supported against gravity

by the local magnetic field. They form when the plasma radiation exceeds the local

heating and the plasma cools catastrophically.

White light eclipse images show the overall structure of the solar corona and

the difference between solar minimum and solar maximum. However, the structure

of the solar corona can only be seen on the disk when the plasma is studied in
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Fig. 2 A sunspot (from the Swedish 1 m Solar Telescope). The dark central region is the umbra

and the stripey region surrounding it is the penumbra

EUV and x-ray. This requires space based instruments, since the Earth’s atmosphere

will block radiation at these wavelengths. On the top row, Fig. 4 shows soft x-ray

images (from Yohkoh) of the corona over a 3 year period. Clearly, the structure of

the corona changes quite dramatically over this time. The middle row shows the

number of sunspots as a function of time. The bottom row shows four white light

Fig. 3 Prominences appear dark on the disk and bright on the limb (courtesy of the High Altitude

Observatory, http://www.hao.ucar.edu/education/slides/slide6.php)
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Fig. 4 Top row: Soft x-ray images of the solar corona showing the change in the magnetic field

over a 3 year period. Middle row: The sunspot number showing the solar cycle. The red dots refer

to the top row and the blue dots to the bottom row. Bottom row: Eclipse images showing the shape

of magnetic fields in the solar corona at solar minimum and solar maximum (courtesy of the High

Altitude Observatory, http://www.hao.ucar.edu/education/slides/slide20.php)

eclipse photographs and a white light coronagraph images from the Solar Maximum

Mission. The red dots indicate when the soft x-ray images were taken. The blue dots

refer to dates of the eclipse and coronagraph images. It is clear that the shape of the

coronal magnetic field varies from sunspot maximum to sunspot minimum.

Figure 5 shows an image from the Extreme ultra violet Imaging Telescope (EIT)

on SOHO. The observed plasma is at a temperature of around 1.5 × 106 K. The

variation in the structure of the corona is quite noticeable. The figure on the right

shows the corona in 1999 as the solar cycle is heading towards sunspot maximum.

The very bright regions are called active regions and consist of closed magnetic

loops (closed in the sense that one end rises from a sunspot into the corona and

then closes back down at the photosphere at another sunspot). In 1997 (left hand

figure,) just after sunspot minimum, there are very few active regions. What is clear

is the large number of transient bright points called x-ray bright points. They are

small magnetic loops and they occur equally during sunspot maximum but appear

less visible due to the active regions. Also clear in the left hand image are two dark

regions at the poles of the Sun. These coronal holes consist of open magnetic field

lines that connect to interplanetary space and are the main source of the fast solar

wind. The coronal holes are still present in the right hand image but they are not

confined to the polar regions and holes may form at low latitudes. Away from the
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Fig. 5 Three images showing the plasma at 1.5×106 K over a 3 year period (courtesy of the SOHO

website, http://sohowww.nascom.nasa.gov/gallery/images/large/tricomp prev.jpg)

active regions and the coronal holes, the corona has a general fuzzy emission called

the quiet sun.

Coronal loops can be seen in amazing clarity with TRACE satellite. Figure 6

shows the emission from the coronal plasma at a temperature of around 106 K. As

will be discussed below, the ionised coronal plasma is ‘tied’ to the local magnetic

field and it is generally assumed that the observed plasma is outlining the coronal

magnetic field. Clearly the field is highly filamentary and it is likely that these fine

strands are not yet fully resolved. Why should the plasma on some magnetic fields

appear hotter or denser than neighbouring ones remains a mystery and is something

that must be explained.

What is clear is that the corona consists of several fundamental building blocks,

namely coronal holes, active regions (and their coronal loops) and quiet sun regions,

within which transient x-ray bright points are observed. Other transient brightenings

are observed including nanoflares and microflares and these will be discussed later.

Fig. 6 Coronal loops above an active region at about 106 K (courtesy of TRACE website,

http://trace.lmsal.com/POD/images/TRACE171 991106 023044.gif). The plasma emission out-

lines the local magnetic field
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This is an excellent time to study the Sun since there are a larger number of dedi-

cated solar space missions. These include the SOHO, TRACE, RHESSI, Hinode and

Stereo missions. When the exciting new high resolution data are becoming available,

we expect to make many major breakthroughs in our fundamental understanding of

how the solar corona works.

The remainder of this chapter is organised in the following manner. A brief dis-

cussion of the energy requirements is given, followed by an estimation of the role

various observed coronal phenomena may play in the heating process. To under-

stand the theoretical ideas used later, an introduction to the basic ideas in MHD

is presented. Then the main energy conversion mechanisms, namely MHD wave

damping and magnetic reconnection, are investigated. Next, applications to the solar

atmosphere are given. Finally, the response of the plasma to a sudden input of heat

is shown.

2 The Energy Budget

So why is there a coronal heating problem? Firstly, it seems to fly in the face of

physical intuition that the temperature should rise as one moves away from the heat

source at the centre of the Sun. However, given that the corona is at a temperature

above one million degrees, why does it remain hot? The main cooling mechanisms at

this temperature and low density are optically thin radiation and thermal conduction

parallel to the magnetic field. The timescale for radiative cooling is the order of

3,000 s and the conduction timescale is the order of 500 s. Hence, heat must be fed

into the corona on at least this timescale and so there must be a mechanism that

provides a continual input of heat to the corona. Withbroe and Noyes [33] estimated

that 300 Wm−2 (or 3×105 erg cm−2s−1) are required to heat the quiet Sun and coro-

nal holes and 5,000 Wm−2 to heat active regions. In addition, the energy required to

drive the solar wind is linked with the heating of the corona and there needs to be

enough energy available to do both.

Klimchuk [18] summarised the coronal heating problem as a flowchart, which

is shown in Fig. 7. Firstly, there must be a source for the energy necessary to heat

the corona and this must lie in the solar interior (and ultimately in the nuclear core).

It is normally agreed that the energy for heating must be stored in the magnetic

field in the corona. So is there a sufficient flow of magnetic energy from the interior

to the corona? This can be estimated by calculating the Poynting flux through the

photospheric surface. Using E = −v × B, the Poynting flux is

E × B

μ
≈

vBh Bv

μ
≈ 104 Wm−2,

where v is the horizontal photospheric velocity, Bh and Bv are the horizontal and

vertical components of the photospheric magnetic field. Here v = 1.2 kms−1 =
1200 ms−1, Bh = 10 G= 10−3 T, Bv = 100 G= 10−2 T and μ = 4π−7H m−1. This

suggests that there is sufficient magnetic energy being transported into the corona
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to keep it hot. Secondly, there must be a mechanism that can convert this stored

magnetic energy into heat. The mechanism responsible for releasing the stored

energy is the main part of this chapter and we will investigate MHD waves and

magnetic reconnection as two possibilities. Note that this part is a purely theoretical

investigation and is entirely independent of the specific application to the coronal

heating problem. It simply investigates how the stored magnetic energy is converted

into heat. Hence, these conversion mechanisms represent a study of basic plasma

processes. Thirdly, after the appropriate mechanism has extracted the stored mag-

netic energy, the plasma will heat and its temperature will rise to the order of a

million degrees. This is investigated by following the thermodynamic evolution of

the coronal plasma in response to the rapid deposition of heat by the conversion

mechanism. Fourthly, the plasma now radiates its energy in the extreme ultraviolet

and soft x-ray part of the electromagnetic spectrum. This plasma radiation can be

detected by suitable space based telescopes as the fifth part of the chain. The ques-

tion now remains as to whether the conversion mechanism actually gives an accurate

representation of the observed plasma radiation. The sixth part studies whether the

properties of the observed plasma radiation matches the theoretical predictions. If

they do not agree, then the loop is repeated and the conversion mechanisms must be

modified. At present, the coronal heating problem is divided up into the individual

parts and solved separately.

Fig. 7 A flowchart, adapted from Klimchuk [18], showing how the coronal heating problem may

be solved. Taking the energy stored in the magnetic field, the conversion mechanism converts this

energy into heat. The heated plasma now radiates and this is the radiation that is observed. Com-

parison between the plasma radiation predicted by the conversion mechanism and the observed

plasma radiation can be used to reject or modify the conversion mechanism
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3 Observed Coronal Phenomena

This section looks at a variety of observed dynamic solar coronal phenomena that

release energy and result in heated plasma. One can use estimates of the energy

released during the event to see if it could contribute to the coronal heating. This, of

course, does not answer the question of how the stored magnetic energy is released

but simply if there is enough energy being released in the event.

3.1 Solar Flares

A solar flare is the result of a rapid release of magnetic energy over a relatively

short period of time. Can they contribute to the heating of the corona? They are

large, with an area of up to 3 × 1015 m2 (although this has to be compared to the

surface area of the Sun of 6 × 1018 m2) and the main energy release has a duration

of minutes to hours. Simple estimates of the total energy released vary between 1028

and 1032 ergs and it is fairly easy to see that this amount of energy can be stored in

the in situ magnetic field. The temperature of flare heated plasma is normally over

5 × 106 K. The number of flares occurring on the Sun in a day depends on the status

of the solar cycle but they may be up to 2–3 on average.

Their contribution to coronal heating is limited, since there are too few events,

and thermal conduction across field lines is negligible. Hence, it is difficult to see

how the energy could be provided to quiet sun regions.

3.2 Coronal Mass Ejections (CMEs)

Coronal Mass Ejections, more commonly known as CMEs, are large-scale dynamic

and highly energetic events. They eject a large amount of mass, up to 1013 kg per

event, from the Sun into interplanetary space. The initial area is around 1015 m2 but

this rapidly expands as they move up and away from the initiation site. The typical

lifetime of CMEs is the order of minutes to hours and the energy involved in a CME

eruption is 1029–1032 ergs, making them very energetic. The frequency does depend

on the solar cycle but there are up to 2 or 3 a day on average. Some, but certainly

not all, CMEs are clearly linked to solar flares and some to erupting prominences.

However, the contribution to coronal heating is like that of solar flares, limited.

There are just too few events to be useful. In fact, most of the energy released is

ejected from the Sun.

3.3 Active-Region Transient Brightenings

These are much smaller and more numerous events. Yet they are still dynamic,

covering an area of 1012–1013 m2 and releasing 1025–1029 ergs in about 2 − 7 min.
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Active-Region Transient Brightenings occur every 3 min on average in active regions

and every hour in quieter active regions. The energy released in these events could

contribute up to 20% of the energy required to heat active regions.

3.4 X-Ray Bright Points

Although called x-ray bright points, due to the poorer resolution of the early x-

ray telescopes, they are actually small magnetic loops that are either emerging or

cancelling with neighbouring magnetic elements. They are seen in EUV and soft x-

rays and cover an area of 5–10×107 km2, releasing 1025–1028 ergs during a lifetime

of between 1 h and 2 days. There are the order of 1,500 new x-ray bright points

every day, with about 200 present on the Sun at any one time. The energy released

in these events could contribute the order of 20–30% of the energy required to heat

the quiet sun.

3.5 Nanoflares and Microflares

Nanoflares and microflares are scaled down versions of flares. They are small scale,

dynamic events that are observed in EUV and soft x-ray wavelengths [3, 19, 24]. The

energy released is less than 1027 ergs and their duration is about 10 min. The area

covered is about 2.7 × 107 km2. Although small, these events are very frequent with

a frequency between 140 and 475 s−1 measured over the disk of the Sun. Hence,

they could contribute up to 30% of the energy necessary to heat the corona. The

exact amount will depend on the frequency of smaller events and so the distribution

of nanoflares is extremely important. Plotting the observed event frequency, f (E) as

a function of event energy, E [17] gives a power law distribution as shown in Fig. 8.

Estimating the negative power, α, in the power law is extremely important to decide

whether small flares (including those too small to be seen at present) dominate the

heating or whether large flares dominate. The total energy, P , released from all

events is given by integrating the event frequency, f (E) = f0 × [E/E0]−α times the

event size, E , over all sizes from the minimum, N , to the maximum, X , detected.

Thus,

P =
∫ X

N

f (E)Ed E =
f0 E2

0

2 − α

[
(

X

E0

)2−α

−
(

N

E0

)2−α
]

. (1)

As can be seen, the small events dominate if α > 2 and the large events dominate

if α < 2. Estimating the value of α from figures similar to Fig. 8 is difficult and the

result depends on the assumptions used. Typically the value, based on maximum

likelihood methods, is slightly below 2. However, there is sufficient uncertainty that

it is difficult to conclude that the large events dominate.
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Fig. 8 The frequency of observed events as a function of the event energy. The slope indicates

whether the main energy release is due to small scale or large scale energy events

3.6 Summary

The likely contributions to coronal heating from the above observed coronal phe-

nomena are listed in Table 1.

The main limitations in determining what is heating the corona by observing

coronal events are as follows:

• Thermal conduction across magnetic field lines is negligible, so that each event

can only heat locally. Need something that applies everywhere.

• If an event is identifiable, then it stands out from the background. Since the

background is the background hot corona this does not allow one to identify

the background heating mechanism.

Table 1 Observed coronal phenomena and their possible contribution to heating active regions

(ARs), quiet sun regions (QRs) and coronal holes (CH)

Regions heated Heating contribution

Solar flares ARs Limited

CMEs CH Limited

ARTBs ARs 20%

X-ray bright points QRs/CH 20–30%

Nanoflares/microflares ARs/QRs/CH 30%
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4 Alternative Heating Observations

In this section, we mention some alternative observations that can help provide some

measure of the form of the coronal heating term in the energy equation and the

amount of heat entering the corona through the photospheric surface.

4.1 Temperature Profile of Coronal Arcades

Using soft x-ray images of large scale coronal loops, it is possible to estimate the

temperature and density profiles along an individual loop. The actual profiles will

result from a balance of thermal conduction, plasma radiation and the unknown

coronal heating function. The first attempt by Priest et al. [27] suggested that uni-

form heating (the same heating everywhere along the loop) fitted the data best.

However, Mackay et al. [20] included a transition region and found heating located

near the footpoints provided the best fit. Finally, Reale [29] considered background

subtraction to isolate the loop first and found that heating localised about the apex

of the loop gave the best fit. Despite the contradictory results, this method does have

potential and just needs better observations of the temperature and density along the

loop.

4.2 Indirect Detection from Magnetograms

A handle on the energy flow into the corona can be obtained by looking at the

photospheric magnetic field. High resolution magnetograms, such as Fig. 9, show

the magnetic field in active regions clearly but they also show the quiet sun field

as well. An enlargement of a magnetogram, see Fig. 10 left, shows how the mag-

netic field is clumped into small fragments. These fragments are continually emerg-

ing, moving in response to the convective granular motions, fragmenting as they

break up, coalescing as two fragments of the same polarity collide and cancelling

as two fragments of opposite polarity meet. Potential field extrapolations using

these magnetograms show that each source connects to several sources. If the

clumps of magnetic field are represented by point sources having the same flux, the

potential field can be readily calculated and Fig. 10 right illustrates the domains

of connectivity. The key point to get from this is that the connectivity is very

complex.

Following these fragments in time, it is possible to show that the photospheric

magnetic field is completely recycled in 15 h. This means that all the magnetic field

line connections at one time are completely changed every 15 h. This implies that

there are significant changes in connectivity and thus magnetic reconnection must

be important. Magnetic reconnection will be discussed later. The small magnetic

fragments cover the quiet sun photosphere and this is called the Magnetic carpet.

Interestingly, estimates of the coronal recycling time, the time for the coronal field

to completely change all its connections, are much shorter at 1.4 h. Magnetic recon-
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Fig. 9 A magnetogram of the solar disk. The white regions shows positive polarity and the black

regions negative. The active regions and sunspots are clearly seen

Fig. 10 Left. An enlargement of a magnetogram showing a region of the quiet sun. The photo-

spheric field forms discrete fragments that move in response to convective motions. Right. The

regions of connectivity based on representing the magnetogram by point sources. Within one

region, the field connects from one source to one sink (after Close et al. [7])

nection must be efficient. Thus, it can be deduced that motion of the magnetic carpet

will contribute to between 90 and 95% of the energy needed to heat the corona in

the quiet sun.
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5 MHD Equations

The equations of Magnetohydrodynamics (MHD) consist of conservation laws for

momentum, mass, energy and magnetic flux, the ideal gas law for the equation of

state and Maxwell’s equations. They are

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇ p + j × B + ρg + F, (2)

∂ρ

∂t
+ ∇ · (ρv) = 0, (3)

ργ

γ − 1

D

Dt

(
p

ργ

)

= ∇ · (κ∇T ) − ρ2 Q(T ) +
j2

σ
+ H, (4)

∂ B

∂t
= ∇ × (v × B) + η∇2 B, (5)

p =
1

μ̃
ρRT, (6)

∇ · B = 0, (7)

j =
1

μ
∇ × B. (8)

ρ is the mass density, v the fluid velocity, p the gas pressure, j the current den-

sity, B the magnetic induction (although commonly called the magnetic field), g

the gravitational acceleration, F other body forces such as viscosity, γ the ratio

of specific heats and is commonly taken as 5/3, κ the thermal conductivity tensor,

T the temperature, Q(T ) the optically thin radiative loss function, σ the electrical

conductivity, H any additional heating terms (such as viscous heating), μ̃ the mean

molecular weight (normally about 0.6 in the solar corona), R the gas constant, μ the

magnetic permeability and η = 1/μσ the magnetic diffusivity. The convective time

derivative is defined as

D

Dt
=

∂

∂t
+ v · ∇.

Note that the Coriolis force and variable rotation are ignored in the equation of

motion (2). The assumptions used in deriving the MHD equations are that lengths

are much larger than the collision length so that there are many collisions and a

single fluid is valid and the plasma is fully ionised and neutral. The primary variables

in MHD are the velocity v and the magnetic field B, while the secondary variables

are the electric field E and the current density j . So the two main equations are the

induction equation (5) and the equation of motion (2).

It can help interpret phenomena by splitting the Lorentz force in the following

manner.
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j × B =
1

μ
(∇ × B) × B = (B · ∇) B − ∇

(
B2

2μ

)

. (9)

Here the magnetic tension is given by (B · ∇) B/μ and the magnetic pressure is

B2/2μ. The tension force will appear whenever the magnetic field lines are curved

and the magnetic pressure force will act from regions of strong field strength to

regions of weak field strength.

We can estimate the importance of the various terms in (2) by assuming

∂

∂t
≈

1

τ
and ∇ ≈

1

L
,

where τ and L are a typical timescale and lengthscale of the system. This defines a

typical velocity as v = L/τ . In many quasi-static situations, the equation of motion

(2) reduces to the force free equation

j × B = 0. (10)

Hence, the Lorentz force dominates all the other terms provided

v ≪ vA =
B

√
μρ

, β =
2μp

B2
≪ 1 and v2

A ≫ gL . (11)

So provided the plasma β (defined as the ratio of the gas pressure to the magnetic

pressure) is small and the typical velocities (both v and the free fall speed) are

smaller than the Alfvén speed, vA, the magnetic field is essentially in force balance

and we call this a force free field. Note that the Lorentz force is perpendicular to

the magnetic field and it can play no role in the balance of forces in the direction

along B. For example, if the magnetic field is vertical and the plasma is static and

isothermal, (2) reduces to

dp

dz
= −ρg = −

μ̃pg

RT
= −

p

H
, (12)

where the pressure scale height is given by H = RT/μ̃g. So along the direction of

the magnetic field, the plasma is in hydrostatic balance.

To a very good approximation, quasi-static magnetic fields in the solar corona

are force free and so j is parallel to B. Hence, the simplest solution for a force free

field is

∇ × B = αB. (13)

This simple looking equation is actually non-linear and complicated to solve,

except for a few cases. Two cases are when α = 0, and the field is potential, and

α = constant, and the field is a linear force free field. The coronal magnetic field is
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not actually potential and it is likely that α is not constant either. The coronal mag-

netic field can be clearly seen in EUV and x-ray images of the Sun. Figure 6 shows

coronal loops, as seen by the TRACE satellite, which outline the local magnetic

field. The magnetic field structure is approximated by a force free field solution to

(13). The loops are almost isothermal since the parallel thermal conductivity, that

is parallel to the magnetic field, is substantially larger than the perpendicular value.

Thus, heat can readily flow along magnetic field lines but not across them.

6 Wave Heating Mechanisms

6.1 Introduction

In recent years oscillations in the solar corona have been detected and these will

be discussed below. Previously, it was assumed that there was insufficient energy in

waves to heat the corona but recent high resolution and high time cadence obser-

vations have indicated that waves are much more pervasive than originally thought.

The estimates of the energy contained within these wave motions is now significant.

In addition, waves are observed almost everywhere in the solar corona and are not

confined to individual local structures. Waves still remain the only likely candidate

for heating the open field regions in coronal holes.

However, before describing observations of them, it is important to ensure that

they are correctly identified. So we will start with a description of MHD waves in

a uniform medium before discussing the nomenclature used in a structured mag-

netic field. After the observations, we will present ideas behind possible dissipation

mechanisms, namely phase-mixing and resonant absorption.

6.2 Waves in a Uniform Plasma

Consider an equilibrium consisting of a static, uniform plasma with a uniform ver-

tical magnetic field

B0 = (0, 0, B0) , p0 constant, ρ0 constant, v0 = 0. (14)

If the equilibrium is disturbed by a small amount, then damped, propagating

linear waves will satisfy the linearised resistive MHD equations, where the linear

terms have subscript 1,

ρ0

∂

∂t
v1 = −∇ p1 +

1

μ
(∇ × B1) × B0, (15)

∂ρ1

∂t
= −∇ · (ρ0v1) , (16)
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∂B1

∂t
= ∇ × (v1 × B0) + η∇2B1, (17)

∂p1

∂t
= −γ p0∇ · v1. (18)

Simple Fourier components of the form exp(ik·r−iωt) can be used to determine

the possible harmonic wave solutions. There are three types of MHD waves, namely

the fast and slow magnetoacoustic waves and the Alfvén wave, and, in the absence of

dissipation η = 0, they satisfy the following dispersion relations. The Alfvén wave

satisfies

ω2 =
(k · B0)2

μρ0

= k2
z v

2
A, (20)

where the square of the Alfvén speed is defined by v2
A = B2

0/μρ0, and the fast and

slow magnetoacoustic waves satisfy

ω4 − ω2k2(c2
s + v2

A) + k2 (k · B0)2

μρ0

c2
s = 0, (21)

where the square of the sound speed is c2
s = γ p0/ρ0 and k2 = |k|2. The terms fast

and slow refer to the phase speed of the two solutions to the quadratic in ω2. The fast

wave has a faster phase speed than the slow wave. Note that if the phase speed, ω/k,

depends on the wavenumber, then an initial wave pulse that is made up of several

individual modes will break up (or disperse) since they all travel at different speeds.

If, on the other hand, the phase speed is constant, then the wave is non-dispersive

and the initial pulse maintains its shape and propagates as a single entity.

In the solar corona the slow and fast phase speeds are approximately given by

cs ≈ 150 km/s and vA ≈ 1, 000 km/s. Since the plasma β is small in the corona,

the fast wave has a phase speed close to the Alfvén speed and the wave is almost

isotropic. However, the slow wave has a phase speed called the tube speed, c2
T =

c2
s v

2
A/(c2

s +v2
A) that is approximately equal to the sound speed and the wave is almost

field aligned. It cannot propagate perpendicular to the equilibrium magnetic field.

Coronal observations always show loop like structure and not a uniform plasma.

Hence, we consider a structured plasma, either a magnetic slab or a magnetic tube

as shown in Fig. 11. Inside the slab or tube the magnetic field strength is Bo, the

temperature To and the density ρo. In the exterior the values are Be, Te and ρe

respectively. Observations of coronal loops illustrate the inhomogeneous nature of

the plasma. Since the magnetic field is almost uniform in a low beta plasma, the

Alfvén speed will also be inhomogeneous. In addition, the sound speeds will be less

than the corresponding Alfvén speeds. When the internal density is higher than the

surrounding plasma the Alfvén speed in the interior will be smaller than the value in

the exterior and the structure will act as a wave guide. If the internal density is lower

than the surrounding plasma, the tube or slab will not support fast magnetoacoustic
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Fig. 11 Left: A magnetic slab model. Right: A flux tube model

waves. We will assume a uniform higher density plasma inside the tube or slab

surrounded by a uniform lower density plasma.

As each region is uniform, the equilibrium is given by continuity of total pressure

at the interface, namely

ρoRTo

μ̃
+

B2
o

2μ
=

ρeRTe

μ̃
+

B2
e

2μ
. (22)

The disturbances in the tube case are defined in terms of cylindrical coordinates

and all perturbations are expressed in the form

f (r )e(imθ+ikz).

Two major classes of waves are defined by the form of the oscillations of the

boundary, namely the sausage mode for which the azimuthal wavenumber is m = 0

and the kink mode with m = 1. The sausage mode does not displace the magnetic

axis while the kink mode does. In slab geometry there is no equivalent to the m ≥ 2

cylindrical modes and so they will not be discussed. A good animation of the two

types of waves can be found at www2.warwick.ac.uk/fac/sci/physics/research/cfsa/

people/erwin/research/vis/.

6.3 Dispersion Curves for a Coronal Loop

Determining the dispersion relation for a coronal loop (or slab) is more complicated

than the simple uniform medium case given by (21). The equilibrium no longer con-

sists of a uniform plasma and are instead functions of, for example, the horizontal

coordinate x . Hence, it is not possible to Fourier analyse in the x direction. The

resulting differential equation for the velocity component, vx , can only be solved

for particular cases, one such case being two uniform plasmas separated by an inter-

face. Assuming that the solutions are exponentially decaying at large distances, the
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Fig. 12 The variation of the phase speed, ω/k, as a function of the dimensionless wavenumber ka.

The solid curves correspond to sausage modes and the dashed curves to kink modes (after Edwin

and Roberts [11])

dispersion relation is obtained by imposing continuity of normal velocity and con-

tinuity of total pressure at the interface. The dispersion relation is a transcendental

equation involving Bessel functions and needs to be solved numerically. The phase

speed as a function of dimensionless wavenumber is shown in Fig. 12. There are

two main bands of propagation corresponding to the fast body waves (both sausage

and kink modes), lying between the external and the internal Alfvén speeds VAe and

VA respectively, and the slow body modes, lying between the external sound speed

c0 and the internal tube speed cT . The internal tube speed is defined as

c2
T =

V 2
Ac2

0

V 2
A + c2

0

, (23)

with a similar expression for the external tube speed, cT e. There is very little vari-

ation in the phase speed for the slow body modes and so they propagate with very

little dispersion. The Alfvén modes are torsional modes with a non-dispersive phase

speed of vA.

The fast body modes all exhibit a cut-off in the wavenumber below which the

modes are no longer trapped and are now propagating into the external medium.

These are called leaky modes. The only exception is the fundamental fast kink mode,

whose phase speed tends to the kink speed, ck , as ka → 0. ck is defined by
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ck =
(

ρ0

ρ0 + ρe

)1/2

VA. (24)

The fact that it remains for small ka, while the other fast body waves leak away,

means that transverse oscillations observed in coronal loops are likely to be kink

waves.

The shaded regions in Fig. 12 are where there are no solutions to the differential

equation that satisfy the imposed boundary conditions for real ω/k. For example, the

region above Ve corresponds to waves propagating in the external region. Since they

do not satisfy decaying solutions at large distances, they are excluded. However,

they correspond to leaky waves.

The key speeds for a coronal loop are summarised in Table 2.

Table 2 Key speeds for the various MHD modes in a cylindrical loop

Sound speed c2
s = γ p

ρ

Alfvén speed v2
A = B2

o

μρo

Slow modes c2
t = c2

s v2
A

c2
s +v2

A

Fast modes vA < c < vAe

Global kink ck =
(

ρo

ρo+ρe

)1/2

vA

6.4 Observations of Waves in the Solar Corona

Radio observations of coronal oscillations have been known for many years, with

good temporal resolution but poor spatial information. The majority of observations

of different wave modes are recent, using spectrographs and imagers to determine

wave properties. This is a short summary of some of the different instruments that

have detected oscillations.

The SUMER spectrograph on the SOHO satellite detected oscillations through

the Doppler effect. They were found in hot loops with a temperature of between

6–10 million Kelvin and the periods were in the range 7–31 min. These waves

rapidly decayed over 1–2 periods.

Eclipse observations with the SECIS camera detected rapid oscillations with

periods in the range 0.5–10 s. There was no apparent decay. The phase speed of

one example of a wave propagating along a coronal loop was 2100 km s−1 with a

period of 6 s. Since these observations involve density variations, the mode must be

compressible and, hence, a form of fast wave.

Observations of TRACE intensity variations, with a magnitude of about 4%

above the background values, show a longitudinal oscillation propagating up from

the lower atmosphere. The modes are damped after a few wavelengths. For fields

above sunspots the typical periods are the order of 3 min, while fields on the edge of

active regions have periods of around 5 min. The latter is hard to understand since
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the 5 min oscillations of the solar interior are evanescent in the lower atmosphere. In

addition, TRACE has also seen flare excited transverse oscillations of coronal loops

that are rapidly damped.

More recent observations of atmospheric oscillations have been observed by the

Hinode and Stereo satellites and I am sure more exciting discoveries will be pub-

lished shortly.

6.5 Classical Alfvén Wave Damping

To understand the difficulty in dissipating these MHD waves, we now consider

damped Alfvén waves with

v1 =
(

0, vy, 0
)

and B1 =
(

0, By, 0
)

.

Again using Fourier components of the form, exp(ik ·r− iωt), we have solutions

to Eqs. (15) and (17), with η �= 0, provided the dispersion relation

ω2 = k2
yv

2
A − iωηk2

y, (25)

is satisfied, where the Alfvén speed is defined by

v2
A =

B2
0

μρ0

. (26)

Assuming that the frequency, ω, is fixed, the wavenumber for upward propagat-

ing waves satisfies

ky =
ω

√

v2
A − iωη

.

Assuming ωη ≪ v2
A, the wavenumber is approximately given by

ky =
ω

vA

(

1 + i
ωη

2v2
A

)

.

Thus, the wavenumber is complex with ky = kr + iki . Substituting into the

exponential form eiky z = eiky ze−ki z , it is clear that the Alfvén waves are damped and

the damping length, Ld , is the reciprocal of the imaginary part of the wavenumber,

namely

Ld =
2v3

A

ηω2
. (27)
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Consider a wave with a period of 5 min, a typical coronal Alfvén speed of

1, 000 kms−1 and a resistivity of 1 m2s−1. The damping length is estimated as

Ld = 5 × 1021 m. This is approximately 10 million light years! Thus, Alfvén waves

are extremely difficult to damp with classical resistivity.

6.6 Waves in a Non-uniform Plasma: Phase Mixing

A mechanism for damping Alfvén waves in a more realistic distance was suggested

by Heyvaerts and Priest [15]. Since the solar corona consists of many loop struc-

tures, with fine scale threads in them, it is clear that the coronal plasma is non-

uniform. Variations in the intensity observed, at a particular spectral line, indicate

variations in the plasma density. As a simple model, we assume that the background

density varies in the horizontal direction as ρ0(x). The same equations as (15), (16),

(17) and (18) apply but this time the wave equation reduces to

∂2 By

∂t2
= v2

A(x)
∂2 By

∂z2
+ η

∂

∂t

(
∂2 By

∂x2
+

∂2 By

∂z2

)

. (28)

The only difference from above is that the Alfvén speed now depends on x . If we

initially neglect the resistive damping term (η = 0), the general harmonic solution

can be expressed as

By = sin(ωt − k(x)z),

where k(x) = ω/vA(x) is the wavenumber and it is a function of x . It is clear that

an initially horizontal wave front will appear to turn away from horizontal as part of

the wave travels faster where vA(x) is large and slower where vA(x) is smaller. Even

if there are no variations with x at the lower boundary, x variations will build up as

the wave propagates higher into the atmosphere. This is illustrated in Fig. 13 by the

Fig. 13 The variation in Alfvén speed causes the wave fronts to turn. Variations in the x direction

build up indefinitely in the absence of η
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surface and contour plots of By for the Alfvén speed profile vA(x) = 1+0.5 cos(πx).

The turning of the wave fronts is maximal where the gradient of the Alfvén speed

profile is largest and minimal where the gradient is zero at x = 0 and x = 1.

Note that the neglected diffusion term, ∂2 By/∂x2, is given by

∂2 By

∂x2
= −z2

[(
1

vA(x)

)′]2

sin(ωt − k(x)z) − z

(
1

vA(x)

)′′
cos(ωt − k(x)z).

Because of the z2 term, this term must become important as the wave propagates

higher into the atmosphere. So, even if the diffusion term is initially small, it must

be included at higher heights.

Returning to (28) but now assuming that η is non-zero, we can solve this equation

either numerically or obtain an approximate solution by the method of multiple

scales. The approximate solution, correct to O(η), is [15]

By = exp

[

−
(k ′(x))2k(x)

6ω
ηz3

]

sin(t − k(x)z). (29)

The numerical solution is shown in Fig. 14 and the effect of enhanced damping

is clearly seen, in that the magnitude of By is dramatically reduced in the regions of

steep Alfvén speed gradient. Taking a cut at x = 0.5, Fig. 15 shows By(0.5, z) as a

function of z. The damping is clearly seen to be faster than a simple exponential. In

fact, it is given by (29), exponential of −z3.

Fig. 14 The variation in Alfvén speed causes the wave fronts to turn, generating gradients in the

x direction. A finite value of η means that the field is quickly damped where the Alfvén speed

gradient is largest
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Fig. 15 The variation of By as a function of height at x = 0.5. The field is rapidly damped with

height, showing the exp(−z3) envelope

6.7 Waves in a Non-uniform Plasma: Resonant Absorption

As in the last section, consider a background uniform vertical magnetic field and a

density that varies in the horizontal direction as ρ0(x). This time we consider fast

MHD waves that are propagating in the horizontal direction. The velocity perturba-

tions (vx , 0, vz) are written in terms of Fourier components of the form f (x)eikz z+iωt

and the linearised equation of motion can be expressed in the form

d

dx

(
N

D

dvx

dx

)

+
(

ω2 − k2
z v

2
A(x)

)

vx = 0, (30)

where the numerator and denominator are given by

N =
(

v2
A(x) + c2

s (x)
) (

ω2 − k2
z v

2
A(x)

)
(

ω2 − k2
z

v2
A(x)c2

s (x)

v2
A(x) + c2

s (x)

)

, (31)

D =
(

ω2 − ω2
I (x)

) (

ω2 − ω2
I I (x)

)

. (32)

The zeros of the numerator give rise to the continuous spectra for the Alfvén and

slow modes. The zeros of the denominator give turning points, where the nature of

the solution changes from oscillatory to exponential or vice-versa.

If the fixed frequency ω is such that the numerator is zero at a point, say xr , then

the equation has a singularity called the resonance point. Here the energy in the

fast wave can be effectively damped by non-ideal dissipation. In a resistive plasma,

note that the magnitude of the perturbed magnetic field By scales inversely with the

resistivity as η−1/3 and the width of the resonant layer is approximately Δx ≈ η1/3.
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Hence, the magnitude of the current in the layer is j ≈ By/Δx ≈ η−2/3. The

total Ohmic heating is given by η j2 ≈ constant. Thus, the total Ohmic heating is

independent of the size of the resistivity.

6.8 Comparison with Observations

Rapid damping of coronal waves may be due to several possible mechanisms in

addition to phase-mixing and resonant absorption. Possibilities are thermal conduc-

tion, mode conversion, area divergence and leakage. Each damping mechanism has

its own predictable characteristics that should be detectable in future observations.

For example, we have seen that the decay time due to phase mixing is

tdecay ≈
(

6L2l2

ηπ2v2
A

)1/3

,

where L is the loop length, l the loop width and vA the Alfvén speed. If l is propor-

tional to L , then tdecay ∝ (L P)2/3, where the period P is defined by the time travel

time P = L/vA. Finally, since the period is related to the length, we have

tdecay ∝ P4/3.

If the damping was due to wave leakage through the boundary we would expect

tdecay ∝ L P.

Finally, if resonant absorption is responsible for the damping, then assuming that

the width of the resonant layer is proportional to the width of the structure we have

tdecay ∝ P.

Analysing several TRACE observations of oscillations the decay time can be

plotted against both L P and P and the slope of the curve determined. As shown in

Fig. 16, the best fit gives a power of 0.67 ± 0.11 for dependence of tdecay on L P

and 1.3 ± 0.21 for the dependence on P . This appears to indicate that phase mixing

is responsible for the damping. However, this is not really clear since the waves

detected are probably not Alfvén waves and it is clear that more observations are

needed.

7 Magnetic Reconnection Theory: Two Dimensions

In simple terms, magnetic reconnection is the process that breaks and rejoins mag-

netic lines of force. In the process of changing the magnetic topology, it converts

magnetic energy into kinetic energy and heat and also accelerates electrons and ions
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Fig. 16 Upper: The decay time tdecay as a function of L P . Lower: The decay time tdecay as a

function of P

to extremely high speeds. In the solar corona, magnetic reconnection provides a

possible mechanism for the energy released in solar flares, CMEs and for the energy

required to heat the corona. For a detailed description of MHD, Hall MHD and

collisionless reconnection see the book by Birn and Priest [4].

7.1 Brief History

This section gives a brief account of the history of reconnection, without going

into any details at this stage. Some key papers are mentioned that can provide the

necessary details of the concepts mentioned but not described.

Giovanelli [13] predicted that flares were occurring near neutral points, where

the magnetic field was very weak. Cowling [8] concluded that if the energy released

during flares was due to Ohmic heating, then the current sheets must be only a few
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metres thick. Dungey [9, 10] realised that current sheets could form as the result of

an instability near a null point and that magnetic field lines can be broken. He called

this breaking of lines of force reconnection.

The first simple model of reconnection was due to Sweet [31] and Parker [22]

and introduced basic scaling laws for the merging of magnetic field lines. Parker

investigated the internal structure of the current sheet due to magnetic annihilation

but found that the energy release was too slow by a factor of at least 100 to explain

solar flares. The first detailed description of the linear development of resistive

instabilities was due to Furth et al. [12] and the tearing mode instability remains

the only mathematically rigorous description of magnetic reconnection. This will

be discussed in detail below. However, the growth rate of the linear instability is

still too slow to explain coronal heating.

The next major advance in reconnection theory came when Petschek [25] realised

that magnetic energy could be released in slow MHD shocks. He imagined that the

current sheet was small in comparison to the length scales of the external plasma and

that four slow shocks extended from the corners of the current sheet. This results in

fast magnetic reconnection with the rate of reconnection only depending on the log-

arithm of the magnetic Reynolds number. However, the current sheet is not treated

properly.

Numerical simulations of magnetic reconnection started in the 1980s. Biskamp

[5] performed some simulations and found that the current sheet always lengthened

to form Sweet–Parker reconnection and never to produce Petschek reconnection.

However, Priest and Forbes [30] showed that fast reconnection can occur depending

on the particular boundary conditions chosen.

The first investigation of reconnection in 3D was presented by Schindler et al.

[30]. We now look at several of the above ideas in more detail.

7.2 Basic Ideas

The main equations to describe reconnection are the equation of motion

ρ
∂v

∂t
+ ρv · ∇v = −∇ p + j × B, (33)

and the induction equation

∂ B

∂t
= ∇ × (v × B) + η∇2 B. (34)

The induction equation describes how the magnetic field changes due to transport

by the plasma velocity and magnetic diffusion. The importance of the terms on the

right hand side of (34) can be estimated by looking at the ratio of the advection term

to the diffusion term. Using simple order of magnitude estimates, we have
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∇ × (v × B)

η∇2 B
≈

V B

L

L2

ηB
=

V L

η
= Rm. (35)

The ratio of the two terms is called the magnetic Reynolds number, Rm, and its

size determines which terms are important in the induction equation. Here V is a

typical plasma velocity and L a typical length scale. If we replace V by the Alfvén

speed vA, then the ratio is called the Lundquist number, S = vA L/η. If Rm ≫ 1,

then the advection terms dominate the diffusion terms. The plasma is called ideal

and the magnetic field lines are ‘frozen into’ the plasma flow (Alfvén’s frozen-in

theorem). The magnetic field lines move with the plasma flow. While there are ideal

MHD instabilities that evolve on a fast Alfvénic timescale and can convert some of

the magnetic energy into kinetic energy, there can be no change to the topology of

the field. Magnetic field lines cannot break and rejoin in ideal MHD. On the other

hand, if Rm ≪ 1, then the diffusion term dominates and the magnetic field lines can

slip through the plasma and changes in field topology can now occur. Hence, the

plasma is able to access lower energy states and can release more magnetic energy.

It is this change in topology that has now been observed and which is generally seen

as circumstantial evidence that reconnection is taking place.

What is a typical value for the magnetic Reynolds number? Assume that the

typical length scale in the solar corona is the order of 50 Mm = 5 × 107 m, the

velocity is the order of 100 kms−1 = 105 ms−1 and the magnetic diffusivity is η =
1 m2s−1 so that the magnetic Reynolds number is Rm = 5×1012. This would suggest

that magnetic diffusion is negligible, unless the length scales in the current sheets

are extremely small (the order of 10 m). The next subsection deals with a possible

process by which a current sheet and short length scales may be generated.

7.3 Current Sheet Formation

One place where current sheets can readily form are at magnetic null points, points

where the magnetic field is actually zero. There are two types of null points in 2D,

namely X-type points and O-type points and they represent weaknesses in the field.

The X-type point can collapse to form a current sheet, as indicated in Fig. 17. The

O-type and X-type points can form together, as we will see, from the break up of a

current sheet. Consider the initial X-point neutral point that is given by the potential

magnetic field

B = (y, x, 0) ⇒ j =
(

0, 0,
∂ By

∂x
−

∂ Bx

∂y

)

= (0, 0, 0) .

Assume that the magnetic field is perturbed in the following manner, similar to a

pair of scissors being closed, so that

Bx = y, By = α2x .
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Fig. 17 The X-point in the left hand figure can collapse to form a current sheet with the plasma

flows indicated by thick arrows in the right hand figure

The equation of the field lines is

dx

Bx

=
dy

By

, ⇒
dy

dx
=

By

Bx

=
α2x

y
.

Integrating shows that the field lines lie along y2 − α2x2 = constant and jz =
(α2 − 1)/μ. So the Lorentz force is no longer zero but instead is given by

μ j × B = (α2 − 1)
(

−α2x, y, 0
)

. (36)

Assume that α2 < 1, then the plasma acceleration is positive in the x direction

and negative in the y direction (for positive x and y). This means that the force is

enhancing the disturbance and the X-point is closing up in the manner indicated in

Fig. 17.

7.4 Diffusion of a Current Sheet

Once the X-point has closed up, it forms a current sheet. This section looks at the

diffusion of a current sheet, specifically in the limit when Rm ≪ 1. Hence, the

induction equation reduces to

∂ B

∂t
= η∇2 B. (37)

The magnetic field is now governed by a diffusion equation with a characteristic

time to diffuse, τd = l2/η, where l is the width of the current sheet, and a typical

diffusion speed, vd = l/τd = η/ l. Since a current sheet is extremely narrow and

to first approximation 1D, the simplest model of a vertical current sheet is B =
(0, B(x, t), 0) where B(x, t) satisfies

∂ B

∂t
= η

∂2 B

∂x2
, (38)

with the initial condition
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B(x, 0) =
{

B0 for x > 0,

−B0 for x < 0.

Since there is no physical length scale in this problem (i.e. no boundary condi-

tions at, say, x = ±l), we can obtain a similarity solution that reduces the partial

differential equation to an ordinary differential equation. This can be solved exactly

in terms of the error function, erf, as

B(x, t) = B0erf(ξ ), where ξ =
x

√
4ηt

.

This can be expressed in terms of the integral

B(x, t) =
2B0√

π

∫ ξ

0

e−u2

du, where ξ = x/
√

4ηt .

Note that for x > 0 as t → 0, ξ → ∞ and so the integral is simply
√

π/2

and B(x, 0) = B0. Similarly for x < 0. For x ≫
√

4π t , B(x, t) ≈ B0 and for

x ≪
√

4π t , B(x, t) ≈ B0x/
√

πηt . Thus, the field reduces to a straight line with a

gradient that decreases in time.

Taking the diffusion equation (38), multiplying by B/μ and integrating over

space, gives an expression for the rate of change of the total magnetic energy. Thus,

B

μ

∂ B

∂t
=

∂

∂t

(
B2

2μ

)

,

∫ +∞

−∞

∂

∂t

(
B2

2μ

)

dx = η

∫ +∞

−∞
B

∂2 B

∂x2
ds

=
[
ηB

μ

∂ B

∂x

]+∞

−∞
−

η

μ

∫ +∞

−∞

(
∂ B

∂x

)2

dx .

Thus, we have

d

dt

∫ +∞

−∞

B2

2μ
dx = −

∫ +∞

−∞

j2

σ
dx, (39)

where μj = ∂ B/∂x and η = 1/μσ . Hence, we have shown that the magnetic

energy decreases in time (since the right hand side is negative). As energy must

be conserved, this magnetic energy is being converted into Ohmic heating. There

is a non-zero Lorentz force but this is only bringing more magnetic field into the

diffusion region.

We now investigate how an inflow into the current sheet and the diffusion in the

sheet can reach a steady state. Consider the stagnation point flow
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v =
(

−
U

a
x,

U

a
y, 0

)

,

where U is a typical velocity and a a typical length scale, and a magnetic field given

by

B = (0, B(x), 0) .

Given this velocity, we can solve the induction equation to get B(x). However, it

turns out that this solution is also a solution of the equation of motion and we have

an exact solution of the non-linear, incompressible, resistive MHD equations. So the

magnetic field satisfies the steady induction equation

0 =
d

dx

(
U

a
x B

)

+ η
d2 B

dx2
. (40)

The first integral gives

E =
(

U x

a

)

B + η
d B

dx
, (41)

where E is the constant electric field. For small values of x the left hand side is

balanced by the resistive term and

B ≈
Ex

η
,

where for large values of x it is the advection term that balances E and so

B ≈
E

U

a

x
.

The full solution is given by solving the first order linear differential equation as

B =
E

η
e−x2/2l2

∫ x

0

eu2/2l2

du, (42)

where the width of the diffusion layer, l, is defined by l2 = ηa/U . The full solution

and the approximations are shown in Fig. 18.

7.5 Tearing Mode Instability

Ideal MHD conserves the magnetic fieldline connectivity so that field lines maintain

their identity, are frozen into the plasma and must move with the plasma flow. In a

resistive, non-ideal plasma field lines need not maintain their identity. This section
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Fig. 18 The full steady state solution (42) as a function of x and the two approximations, B ≈ Ex
η

and B ≈ E
U

a
x

will investigate the effects of finite resistivity. Now the topology of the magnetic

field can change, from straight fieldlines to closed fieldlines, and create magnetic

islands.

If we have a magnetic field B = (0, 0, Bz0(x)) in equilibrium with a gas pressure

p0(x), such that

p0 +
B2

z0

2μ
= constant, (43)

then in ideal MHD a perturbation that squeezes the field lines together will simply

build up a magnetic pressure that opposes the motion. However, in a resistive plasma

the field lines can break and reconnect, accessing a different magnetic topology

with a lower magnetic energy, as indicated in Fig. 19. The tearing mode is a linear

instability that can grow exponentially in time and cause reconnection to occur.

First of all we must linearise the non-linear MHD equations about the equilib-

rium. Thus, we set

p = p0 + p1(x)eikzeσ t ,

B = B0 + B1eikzeσ t ,

v = v1eikzeσ t ,
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Fig. 19 The tearing mode instability forms X-type and O-type neutral points. The creation of

closed fieldlines illustrates change in topology from straight lines and indicates that reconnection

has occurred

and so the linearised, incompressible, resistive MHD equations are

ρ0

∂v1

∂t
= −∇ p1 + j1 × B0 + j0 × B1, (44)

∇ · v1 = 0, (45)

∂ B1

∂t
= ∇ × (v1 × B0) + η∇2 B1. (46)

We have chosen incompressibility (∇ · v1 = 0) to simplify the analysis. Thus,

because the divergence of both B1 and v1 are zero, it is convenient to set

B1 = ∇ A1 × ey, v1 = ∇ψ1 × ey,

where the perturbed flux function is A1(x)eikzeσ t and the streamfunction is ψ1(x)eikz

eσ t . We now have
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σ A1 − ik Bz0ψ1 = η

(
d2 A1

dx2
− k2 A1

)

, (47)

σρ0

(
d2ψ1

dx2
− k2ψ1

)

=
ik

μ

[
d2 Bz0

dx2
− Bz0

(
d2

dx2
− k2

)]

A1. (48)

Equation (48) is derived by taking the curl of the linearised equation of motion.

This eliminates the perturbed pressure gradient. Because η is small, there are bound-

ary layers at the location where Bz0(x) = 0, say x = 0. At the field reversal recon-

nection can occur. Depending on the values of k and the value of d2 Bz0/dx2, the

plasma can be unstable with a growth rate that scales with fractional powers of the

Alfvén timescale τA = 1/vAk and the diffusion timescale τr = η/L2. For Cartesian

problems it can be shown that

σ ≈ τ
−2/5
A τ−3/5

r . (49)

A consequence of the tearing mode is the break up of the current sheet into

O-type and X-type null points, where the magnetic field is zero, as shown in Fig. 19.

At the O-type points the current is enhanced and at the X-type points it is reduced.

We can think of the current sheet as being represented by many line currents in the y

direction, lying along the z axis. The instability causes the line currents to attract at

the O-type points, increasing the current there. Note that the instability only occurs

when resistivity is non-zero.

Finally, it is possible to extend this description to include a magnetic field com-

ponent in the y direction. The same X-type and O-type geometry is seen but these

points are not null points since the magnetic field no longer vanishes at those points.

The null points are not essential for the tearing mode to occur. All that is needed is a

concentrated current sheet, where the current is large. If a is the width of the current

sheet and k is the wavenumber of the disturbances along the sheet, then tearing will

occur when ka is typically less than unity. Note that the magnitude of the current is

the order of B0/μa, so as a is reduced the current increases.

7.6 Reconnection Models

Having looked at the formation of a current sheet and how an instability can start

reconnection, we look at some models that describe how steady reconnection can

develop. The first model was the Sweet–Parker model [31, 22]. This is simply an

order of magnitude model that assumes the diffusion layer has a length of 2L and a

width of 2l as shown in Fig. 20. The in-flow velocity is vi and the in-flow magnetic

field is Bi . The out-flow velocity and magnetic field are vo and Bo. If the plasma is

incompressible, conservation of mass gives

vi L = vol,



Coronal Heating 143

Fig. 20 The Sweet–Parker model for steady state, 2D reconnection. Solid arrows indicate the

plasma velocity

and balancing the in-flow velocity with an outward diffusion velocity defines vi as

vi =
η

l
.

Estimating the acceleration due to the Lorentz force along the sheet and into the

out-flow region gives

vo = vAi ,

where vAi is the Alfvén speed associated with the in-flow magnetic field, that is the

magnetic field component that actually reconnects. Thus, the reconnection rate can

be determined as

vi =
vAi

R
1/2
mi

, where Rmi =
LvAi

η
. (50)

It should be noted that this model is still just a cartoon and, although backed

up by numerical simulation, there is no detailed mathematical description of the

diffusion region. Nonetheless, what is clear from this model is that the reconnection

rate depends on the inverse square root of the magnetic Reynolds number in the

in-flow region. For large values of Rm this reconnection rate is too slow to explain

the energy released in solar flares or indeed for heating the solar corona. The only

way to speed things up would be to reduce the value of L and have a much shorter

current sheet.

Petschek [25] suggested that slow MHD shocks could extend from the corners

of a much smaller diffusion region, as shown in Fig. 21, and that the majority of

the magnetic energy could be released in the slow shocks rather than in the current

sheet. A detailed analysis of the external region showed that the reconnection rate

could be as large as
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Fig. 21 Petschek reconnection, showing the diffusion region and the four slow mode shocks ema-

nating from the corners (shown as dashed curves). Solid arrows indicate the plasma velocity

vi =
πvAi

8 log Rmi

. (51)

The logarithmic dependence on the magnetic Reynolds number is very weak and

the reconnection rate is now the order of a tenth of the Alfvén speed. This was the

first fast reconnection model.

Priest and Forbes [28] have presented a new generation of fast reconnection

regimes, of which Petschek is only one. The theory agrees with numerical simu-

lations provided the same boundary conditions are used.

The length scales inside the current sheet can become extremely small so that

MHD is no longer appropriate and additional physical terms must be included. Hall

MHD, in which the Hall term in Ohm’s law is retained, has been quite successful

in obtaining a high reconnection rate. In addition, kinetic theory is important when

collisions are no longer dominant. Details of these approaches can be found in Birn

and Priest [4].

8 Magnetic Reconnection Theory: Three Dimensions

Reconnection in 3D opens up many new features that are just not present in 2D.

The detailed theory of how magnetic field lines break and reconnect is much more

recent and less well developed. Before looking at some of the ideas, it is useful to

introduce some of the building blocks that will be needed later on.
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8.1 Magnetic Null Points

Magnetic null points are locations where the magnetic field is actually zero and

these represent weaknesses in the field. In 3D the simplest null point has a magnetic

field of the form

B = (x, y,−2z) . (52)

Here the null point is at the origin and nearby the field can be approximated by

linear expressions in x , y and z. The field lines are indicated in Fig. 22. It is clear

that there are two families of special field lines that pass through the null point. The

single field line along the z axis is called the spine and the group of field lines lying

in the x–y plane are called the fan plane. In 2D there are only a pair separatrix

curves passing through the null and one of the separatrix curves becomes the spine

while the other forms the fan plane when considering 3D null points. The fan plane,

when extended away from the null point, forms a surface that separates regions of

different magnetic connectivity and so this surface is called a separatrix surface.

Note that, although the magnetic field strength is zero at the null point, it is not

zero on either the separatrix surface/fan plane or spine. If there are two 3D null

Fig. 22 Magnetic field lines near a simple 3D null point. Special field lines coming from the null

show the spine and the fan plane
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Fig. 23 Left: Magnetic field lines passing through a 2D null point are the separatrices. These

separate regions of different connectivity between the four sources. Right: In 3D the intersection

of two separatrix surfaces is a single field line called the separator that connects two null points

points, then the separatrix surfaces may intersect giving rise to a special field line

that connects the two nulls, called a separator. Projecting the magnetic field onto

a plane perpendicular to the separator will show a magnetic field structure that is

topologically similar to the 2D picture of an X-point (see Fig. 23). Of course, since

there is a guide field, the field strength is only zero at the null points.

In 2D, magnetic reconnection transfers magnetic flux from one 2D region to

another through the null point. In 3D reconnection, the transfer of magnetic flux

from one 3D region to another can occur along the separator.

8.2 The Magnetic Skeleton

The magnetic field in the solar corona is highly complex because there are many

distinct sources in the photosphere. To understand how this complexity is linked to

ways of heating the solar corona, we need to understand where the currents are likely

to form and, hence, where the heating will occur. Detailed numerical experiments

have been performed but to see what is happening pictorially requires a detailed

understanding of the magnetic topology. One way of doing this is to plot many field

lines and where they end up. This is a little random and it is better to determine the

special field lines that outline the magnetic skeleton. To do this, it is important to

locate the nulls and then determine the spine and fan planes. Next, if there are two

nulls and their separatrix surfaces intersect, then there will be a separator field lines

connecting the nulls. This is illustrated in Fig. 24.

The topology can be very complex, with more than one separator coming from

a null point, with null points in the corona as well as in the photospheric boundary.

However, what is clear is that there can be many separatrix surfaces in the corona.

As we shall see in the sections below, separatrix surfaces are ideal locations for

current sheets to form and, hence, they are likely to indicate the locations where

coronal heating and magnetic reconnection will occur. Assuming that the photo-

spheric sources are slowly moved by the changing convection pattern, we can inves-

tigate how the topology of the magnetic field can also change. If there is a dramatic
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Fig. 24 Sample field lines, projected onto the lower boundary, for two unbalanced sources (left)

and the corresponding 3D magnetic skeleton (right). There is one null point lying on the line

joining the two sources, beyond the weaker source

change in topology of these potential field calculations through bifurcations, then

it is likely that there will be a dramatic change in the evolution of the real field. A

bifurcation will require reconnection in order for it to occur.

8.3 Examples of Reconnection in 3D

Reconnection can occur in three dimensions either at a null point or in the absence

of a null. At a null point there are three different types of reconnection, namely spine

reconnection, fan reconnection and separator reconnection.

One of the surprising differences between 2D and 3D concerns the field line

velocity. In 2D, away from the null point, the electric field, the magnetic field and

the velocity satisfy

E + w × B = 0,

where we have defined the field line velocity w. In the ideal MHD region, away from

the null point, w is identical to the plasma velocity v. In 2D, w exists everywhere

except at the null point, where the magnetic field lines change their connectivity.

If two identical flux tubes are brought together to reconnect at the null point, they

will join up with their partner and form another two identical tubes. The flux tubes

rejoin perfectly. In 3D, if there is an isolated diffusion region surrounding a null

point, then there is no w that satisfies the above ideal Ohm’s law. What happens is

that field lines continuously change their connectivity in 3D. If two flux tubes are

brought into the diffusion region, they will split up but will not, in general, rejoin

perfectly.

The non-linear evolution of a kink instability has been studied by Browning et al.

[6] and Hood et al. [16]. An initially twisted magnetic loop becomes unstable to an

ideal kink instability. The kink forms a current sheet and magnetic reconnection
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Fig. 25 Left: The twisted loop becomes unstable to the linear kink instability. Middle: A helical

current sheet wraps around the loop and reconnection starts to occur. Right: Towards the end of the

simulation, substantial reconnection has resulted in two almost unconnected loops

occurs when there is no null point in the system. The tube eventually untwists and

relaxes towards a lower energy state. Figure 25 shows the evolution at three different

times. In the left hand figure, the tube has begun to kink and a small current sheet

(red) is forming. The blue fieldlines are traced from the centre of the loop at the left

hand end and the yellow fieldlines from the right hand end. There is an axial field

everywhere but only the fieldlines near the loop centre are shown. Obviously the

blue and yellow fieldlines wrap around each other. As the instability develops, the

current sheet extends along the loop, as shown in the middle figure, and the blue and

yellow fieldlines are no longer closely linked. This illustrates that reconnection has

occurred. In the right hand figure, the instability is nearly finished and the current

sheet is almost entirely dissipated. The blue and yellow fieldlines now form two

almost separate loops that slowly wind around each other.

In simulations looking at how magnetic fields emerge through the photosphere

and rise into the corona, examples of 3D reconnection have been clearly seen.

For example, Archontis et al. [2] looked at how one tube emerged and formed

a non-uniform corona. A second tube then emerged into this more complex field

and a current sheet formed at the separatrix surface/interface between the two

flux systems, as shown in Fig. 26. Although there is no magnetic field outside

the initial tubes, they rapidly expand and fill the volume above the solar surface.

Since there is a field component in the ignorable direction, there is no null point

associated with the current sheet. As the sheet strengthens and thins, a tearing

mode is excited and plasmoid-like structures are formed, even though there is

no null point is this region. These plasmoids are ejected from the current sheet,

allowing reconnection to occur more rapidly. Eventually, a vertical current sheet

forms and a hot jet is created that causes the plasma to flow along the separatrix

curve.

Reconnection jets have also been seen in simulations investigating how an emerg-

ing flux tube interacts with a horizontal uniform magnetic field in the corona. The

initial set-up is shown in Fig. 27 (left). Depending on the orientation of the overlying

field, the emerging field can meet the coronal field at any angle from anti-parallel
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Fig. 26 Upper: The arrows show field lines and the magnitude of the current is shown in colours.

The current sheet forms between the two flux systems. Middle: The current sheet tears, forming

plasmoids. Lower: The colour contours indicate the plasma temperature and arrows the direction

of the local magnetic field. High temperature jets are formed along the separatrix

to parallel. A current sheet forms along the separatrix surface between the two flux

systems (shown in blue in Fig. 27 (right) and reconnection can occur. Strong recon-

nection outflows are seen as jets, shown as green isosurfaces in Fig. 27 (right). In the

majority of the cases analysed, there is no null point related to the reconnection site

but it does occur along separatrix surfaces. Further details can be found in Archontis

et al. [1].

9 Applications to the Solar Corona

The theories of reconnection require current sheets that are much narrower than the

typical lengthscales of the corona and if we are going to use these current sheets

to heat the corona there must be many such sheets in a single coronal loop. How

can a large number of current sheets form in the corona? Parker [23] suggested

that random motions at the photosphere, due to granulation, would slowly braid

magnetic field lines in the corona resulting in the formation of many current sheets.
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Fig. 27 Left: The initial configuration consists of a stratified atmosphere, a flux tube in the solar interior and a uniform horizontal coronal magnetic field. Right:

High temperature jets (green isosurface) are formed due to reconnection between the emerging field and the overlying coronal field
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Using observed magnetograms, it is possible to track the movement of magnetic

fragments at the photosphere. What is seen is that fragments can either emerge (as

a new fragment appears), merge (as two fragments of the same polarity merge),

split (as a fragment breaks into two or more components) or cancel (as two opposite

polarities merge and cancel). Hagenaar [14] estimated that the photospheric mag-

netic flux is completely re-cycled every 15 h. Close et al. [7] constructed coronal

potential fields from photospheric magnetograms and studied the connectivity of

the resulting field. They found that the coronal magnetic field is re-cycled every

1.5 h. This suggests that reconnection must be efficient in the corona and that it

must occur at many distinct locations. Hence, the Parker braiding idea can really

form many discrete current sheets. Each one will allow reconnection, in the form of

a nanoflare, and will release magnetic energy as heat throughout the corona. To heat

a single coronal loop, as observed by TRACE, requires 1 nanoflare every second.

However, each coronal loop may in fact have around 100 different photospheric flux

sources in what is called the magnetic carpet.

This section will show how current sheets can develop with two simple examples,

both involving the simple motion of discrete magnetic sources.

9.1 Flux Tube Tectonics

Parker’s idea of braiding involved complex photospheric motions of an initially

uniform magnetic field. However, Priest et al. [26] realised that the same effect

can occur with a simple flow pattern and discrete magnetic footpoints in the pho-

tosphere. Neighbouring sources can move past each other and currents can build

up on the separatrix surfaces between them, in a manner similar to plate tectonics

on the Earth. Thus, flux tube tectonics will cause currents to build up in the quasi-

separatrix surfaces between the sources and eventually reconnection will occur and

heat the loop. The initial build up of currents was demonstrated in the numerical

simulations of Mellor et al. [21]. Four positive magnetic sources are placed on the

left hand boundary representing the photosphere and four negative source on the

right hand boundary, representing where the sources return to the photosphere. An

imposed photospheric flow moves two of the sources on each boundary between the

other two stationary sources. The initial set up at one of the boundaries is similar

to the cartoon in Fig. 28. The central source is driven between the outer two with a

smooth velocity profile. Thus, although the velocity and the motion of the footpoints

is smooth, the field distribution is not smooth and discontinuities can develop in the

magnetic field, which will appear as current sheets.

Currents sheets rapidly build up on the separatrix surfaces as shown schemati-

cally in Fig. 28 and from the simulations in Fig. 29. What is clear from the results

is that the current sheets are almost one dimensional and this allows one to develop

a simple theory to explain the main features in the simulation. The magnetic field

strength builds up quadratically in time, as shown in Fig. 30 for both our simple

model and the numerical solution. Note that the numerical solution has an oscillation
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Fig. 28 A smooth motion on the photospheric boundary (only non-zero within the dashed region)

causes current sheets to develop along the separatix surfaces between the central source and the

two outer sources

Fig. 29 Isosurfaces of current density demonstrate the formation of current sheets along the sepa-

ratrix surface between the outer sources and inner magnetic sources
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Fig. 30 The mean of B2 (solid curve) at x = 0, y = 0, for a driving velocity of 0.03, as a function

of time. An analytical approximation for B2 demonstrates a good agreement between theory and

simulations (after Mellor et al. [21])

on top of the general rise in field strength due to propagation of Alfvén waves along

the field. The location of the current sheets can be calculated from the jump in By

and this is shown in Fig. 31. Note that the value of By and the current sheet location

increase in time.

To understand how this can be modelled by a simple expression, the fact that the

field rapidly expands from the sources on the boundaries and then remains almost

uniform means it can be approximated by a simple flux function, A(x, t), where

B =
(

0, By(A),
∂ A

∂x

)

.

This ensures that ∇ · B is always zero. Given the prescribed boundary velocity,

which can be expressed in terms of the flux function as vp(A), the footpoint location

can be determined and expressed in terms of By by integrating along a field line.

Thus,

δ(A) = vp(A)t =
∫ z=l

z=0

By(A)

Bz

dz ⇒ δ(A) =
By(A)l

∂ A/∂x
.

From this it is clear that the magnetic energy due to the increase in By will

increase quadratically in time. Finally, the condition for the vanishing of the Lorentz

force gives total magnetic pressure constant in space, but not in time, and so
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Fig. 31 Line plots through the current sheets clearly indicate the position of the current sheets

and that they are moving apart in time. The positions are predicted by the simple analytical model

described in the text

(
∂ A

∂x

)2

+ B2
y (A) = k2(t).

This can be solved to get A(x, t), By and so the current sheet location can be

determined as a function of time. This can be compared with the numerical solution

as shown in Fig. 31, and good agreement is obtained.

9.2 Fly By

Now we consider how the simple relative motion of two single sources, with an

overlying uniform coronal magnetic field, can lead to the formation of current sheets

and reconnection. The initial set up is shown in Figure 32. The photospheric sources

do not initially connect with each other, only connecting to the overlying magnetic

field. The magnetic skeleton is shown in Fig. 32. The yellow spine field line is

clearly seen coming from the photospheric null point. The fan plane sweeps round,

above the positive white source and forms the separatrix surface. All the field lines

from the white source lie inside this surface. Similarly, the same null point, spine,

fan plane and separatrix surface are seen for the negative, black source. What is clear

is that the two surfaces do not intersect, indicating that the sources are disconnected

initially.
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Fig. 32 The initial set up as described in the text. The white source and yellow field lines will

move to the right and the black and red field lines will move to the left in response to photospheric

motions

An imposed photospheric motion is imposed on each source, driving the white

source to the right and the black source to the left. This causes the two surfaces to

interact with each other, forming a current sheet in between (Fig. 33). Here recon-

nection, and heating, can occur.

What this illustrates is how a simple motion of discrete magnetic sources can

produce current sheets in the corona and, when reconnection occurs in these sheets,

heat the plasma.

Fig. 33 Once the separatrix surfaces come into contact with each other, a current sheet forms

between them
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10 Plasma Response to Nanoflare Heating

The final piece of the coronal heating problem is to understand how the plasma

responds to the deposition of heat. Is it possible to determine the form of the heat-

ing function by analysing the observed temperature structure along a coronal loop?

Based on Yohkoh soft x-ray observations of a large coronal loop, Mackay et al.

[20] calculated the plasma temperature along the loop, T (s), where s is the distance

along the loop. The idea was to choose the form of the coronal heating function,

H (s), to give the best fit with this temperature profile. The results were somewhat

contradictory.

However, a steady state is unlikely and if the heating is due to nanoflares then the

heating function must depend on both position and time, H (s, t). Functional forms

for the heating function can be picked and the response of the plasma followed using

a one dimensional hydrodynamic simulation code.

∂ρ

∂t
+

∂

∂s
(ρv) = 0, (53)

∂

∂t
(ρv) +

∂

∂s
(ρv2) = −

∂p

∂s
+ ρg(s) + Fν, (54)

∂p

∂t
+

∂

∂s
(pv) = (γ − 1)

(
∂

∂s
(κ

∂T

∂s
) + H (s, t) − ρ2 Q(T ) − p

∂v

∂s
+ ǫν

)

(55)

where the equation of state is the ideal gas law, the coronal heating function is

assumed separable, Fν is the viscous force and ǫν is the viscous heating term

and so

p = ρRT,

H (s, t) = f (s)g(t),

Fν =
∂

∂s

(
4

3
ν
∂v

∂s

)

,

ǫν =
4

3
ν

(
∂v

∂s

)2

.

Q(T ) represents the optically thin radiative loss function, κ is the parallel electron

heat conductivity, γ is the ratio of specific heats and g(s) gives the variation of

gravity along the magnetic field line.

The simulations of Klimchuk [18] assume that the plasma is heated for 250 s and

this heating is repeated after 3,800 s. The spatial forms of the heating is varied in

different runs using uniform heating, heating near the base, heating at the top and

random heating locations. The temperature remains over 1 million K but the tem-

perature profile does vary depending on the form of the heating. These differences
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are sufficiently large to be detectable with the new EIS observations from Hinode

(Fig. 34).

Fig. 34 The temperature profile along a coronal loop at the same time for various different forms

of heating

11 Summary

To make progress on understanding the mechanism that heats the corona, the prob-

lem can be split into several distinct sections. Firstly, it is important to understand

how much energy is required and how observable phenomena can provide that

amount of energy. What is certainly clear is that the motion of the many discrete



158 A.W. Hood

photospheric sources in the quiet sun can provide ample supply of energy through

the Poynting flux. This energy may be transmitted to the corona by wave motions or

in a quasi static manner that results in the build up of many current sheets. It is not

clear which dominates at present.

The damping of MHD waves is difficult and in a uniform plasma the lengthscales

and timescales are totally inappropriate for the heating problem. However, damping

is dramatically enhanced in a non-uniform plasma due to phase mixing or resonant

absorption.

The formation and disruption of current sheets was introduced in 2D and the

basic ideas behind reconnection explained. In 3D things are more complicated!

However, an understanding of where current sheets are likely to form and where

reconnection may occur can be obtained by looking at the magnetic skeleton and

identifying the null points, separators, separatrix surfaces, fan planes and spines.

But what happens to the plasma once the relevant mechanism deposits the heat

in the corona? Here studies have restricted attention to high resolution 1D hydro-

dynamic simulations, confined to individual field lines. Heat is deposited at various

locations and the temperature and density of the plasma determined. This can be

compared with observations with a view to determining the heating profile. Finally,

the heating mechanism must be able to reproduce the same heating profile.

We are not yet able to say exactly how the corona is heated but it is due to the

coronal magnetic field. Progress will be made over the coming years with the amaz-

ing high resolutions observations from the recently launched Hinode and STEREO

missions and the SDO mission due for launch in 2010. Exciting times are ahead.
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Flows in Molecular Media

David Flower

Abstract We consider the hydrodynamic properties of shock waves that are propa-

gating under the very low–density conditions of interstellar clouds. The macroscopic

and microscopic aspects of the flows are discussed, including the feedback of the

chemistry and of radiative losses on the structure of the shock waves. The diagnostic

potential of the rovibrational spectrum of H2, excited in outflows that are associated

with low–mass star formation, is given particular attention. Most of the analysis

is restricted to steady–state, one–dimensional structures, but some consideration is

given to the temporal evolution of shock waves, which it is necessary to consider in

the context of outflow sources.

1 Introduction

The generation of shock waves is an inevitable consequence of the impact of a pro-

tostellar jet on the surrounding ambient material – dust and molecular gas – from

which the protostar formed. The speeds of the jets, as deduced from the widths of

spectral lines, are strongly supersonic, and a shock wave will propagate into the

molecular gas. In these lectures, we shall be concerned with techniques for mod-

elling the physical and chemical structure of such shock waves and for predicting

their spectroscopic signatures. The ultimate objective is to relate the intensities and

profiles of emission lines produced by the shock waves, which are observable quan-

tities, to the dynamical characteristics of the jets and thence to the process of star

formation.

In practice, not one but two shock waves are produced by the interaction of a jet

with the ambient material. In the rest frame of the ambient gas, the jet is seen to

impact at its outflow speed. However, if a Galilean transformation is made into the

rest frame of the jet, the ambient gas appears to impact the jet with the same speed,

generating a ‘reverse’ shock wave. The appropriate reference frame in which to view

the collision is the centre of mass frame; but if the mass of the ambient molecular

cloud is much greater than that of the jet – a condition that is very likely to be
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satisfied – the centre of mass frame is almost coincident with that of the ambient

medium. The consequences of the heating and compression of the ambient molecu-

lar gas and grains by a shock wave will be considered below.

In early work on hydromagnetic shock wave in the interstellar medium [1], the

ionized and neutral fluids were assumed to be fully coupled. In this case, the action

of the magnetic field on the ionized gas is transmitted simultaneously to the neutral

gas. If the degree of ionization is low, decoupling of the flows of the ionized and

the neutral fluids can occur. The magnetic field may be considered to be ‘frozen’

in the ionized fluid, which is electrically conducting. When the magnetic field has

a component perpendicular to the flow direction, the compression of the ionized

gas is accompanied by the compression of the magnetic field, but the effects of

this compression are felt by the neutrals, via collisions with the ions, only after a

delay. Differences develop in the flow speeds of the charged and neutral fluids, a

phenomenon which is termed ‘ion-neutral drift’, from the viewpoint of the fluids,

or ‘ambipolar diffusion’, from the viewpoint of the magnetic field, which diffuses

through the neutrals, along with the ions.

The effects which are associated with the partial decoupling of the charged and

the neutral fluid were investigated subsequently by Mullan [2]. As a consequence

of ambipolar diffusion, the neutral fluid is compressed and heated in advance of the

shock discontinuity. This heating mechanism was incorporated, in an approximate

manner, into the shock model of Hollenbach and McKee [3], but it was not until

the work of Draine [4] that a quantitative model of such magnetohydrodynamical

(MHD) shock waves became available. The model of Draine, like its predecessors,

assumed that steady state had been attained; only recently have time-dependent

models (which describe the temporal evolution and the spatial structure of shock

waves) found their way into the literature [5–8].

In the ambient medium, the kinetic temperature of the gas is low (T ∼< 100K)

and even slightly endothermic processes, such as the important charge exchange

reaction

H+ + O → H + O+ − 227K, (1)

are effectively inhibited. Consequently, the gas-phase chemistry of the ambient

medium is dominated by reactions with no endothermicity and no reaction barrier.

However, as a result of shock wave heating, chemical reactions which are endother-

mic, or which present reaction barriers attaining a few tenths of an electron volt,

become significant. The requisite energy derives from the motion of the shock wave

(i.e. from the ‘piston’ which drives it) and is transmitted to the gas in the form of

thermal energy and, in MHD shocks, through the ion-neutral drift. Then, reactions

which are unimportant in the ambient medium, such as

C+ + H2 → CH+ + H − 4640K (2)

and

O + H2 → OH + H (3)
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(which has a barrier of 2980K), assume significance.

Whilst the shock structure is important in determining the chemistry of the

medium, the chemistry is important to the structure of the shock wave. Chemi-

cal reactions affect directly the degree of ionization of the medium and hence the

interaction with the magnetic field. Furthermore, chemical reactions influence the

abundances of the atomic and molecular species, which cool the gas, principally

through the collisional excitation of rovibrational and fine structure transitions. The

dynamical and chemical conservation equations are interdependent and should be

solved in parallel. So too should the equations for the population densities of the

rovibrational levels of the H2 molecule, which is the main coolant of shocked molec-

ular gas. There is a delay in the response of the level populations to changes in the

density and the kinetic temperature of the gas; this delay is taken into account only

when the equations for the level populations are integrated in parallel with the MHD

and chemical conservation equations, to which we now turn.

2 The MHD Conservation Equations

The physical quantities with which we shall be concerned are the numbers of par-

ticles, their mass, momentum and energy. It has already been mentioned that the

ionized and neutral fluids can develop different flow velocities; their temperatures

may also differ. Furthermore, the temperatures of the ions and the electrons at any

given point in the flow may not be equal. The development of differences in the

velocities of the positively and negatively charged fluids is resisted by large electri-

cal forces; these ensure that the velocities and the number densities of the positive

and negative particles are effectively equal everywhere.

2.1 The Conservation Equations in One Dimension

In the following analysis, it will be assumed that a stationary state has been attained,

in which case ∂/∂t = 0. The total time derivative may then be written as

d

dt
=

∂

∂t
+ u · ▽ = u · ▽, (4)

where u is the flow velocity and ▽ = î∂/∂x+ĵ∂/∂y+k̂∂/∂z is the gradient operator.

If the flow is plane-parallel in the z-direction, then ▽ = k̂∂/∂z and

d

dt
= u

d

dz
. (5)

By making these assumptions, we exclude the possibility of studying rigorously

both the temporal evolution of the shock wave and its structure in more than one

spatial dimension; but we simplify considerably the numerical aspects of the prob-

lem, which reduces to solving coupled ordinary (rather than partial) differential

equations.
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Subject to the assumptions above, the equation for the number density of neutral

particles states that

d

dz
(ρnun/μn) = Nn (6)

where ρn is the mass density of the neutrals at the point z, μn their mean molec-

ular weight and un is their flow speed in the z-direction. The ‘source’ term on the

right-hand side of Eq. (6) is the rate of creation (or destruction, if negative) of neu-

tral particles per unit volume through recombination and ionization processes. For

example, the formation of molecular from atomic hydrogen results in a net reduction

in the number of neutral particles, and so Nn < 0.

An analogous equation holds for the positively (and the negatively) charged fluid:

d

dz
(ρ+u+/μ+) = N+. (7)

The positively charged fluid, denoted by ‘+’, comprises the positive ions and

positively charged grains. In general, Nn �= −N+: dissociative recombination pro-

cesses, for example,

CH+ + e− → C + H (8)

result in the destruction of one ion but create two neutrals.

The equation of mass conservation for the neutrals may be written as

d

dz
(ρnun) = Sn, (9)

where Sn denotes the rate per unit volume at which neutral mass is created or

destroyed. The corresponding equation for the positively charged fluid is

d

dz
(ρ+u+) = S+. (10)

Because neutral mass may be created only through the destruction of

charged mass, by recombination of positively and negatively charged particles,

S+ + S− = −Sn, where the subscript ‘−’ refers to the negatively charged fluid,

which comprises the electrons, negative ions and the negatively charged grains.

When the negatively charged particle in the recombination reaction is an electron,

which is the most frequent case, S− is negligible.

Momentum has to be conserved also. For the neutral fluid, the equation of

momentum conservation takes the form

d

dz

(

ρnu2
n +

ρnkBTn

μn

)

= An, (11)

where Tn is the temperature of the neutral fluid at the point z, and An determines the

rate at which momentum is being gained or lost by unit volume of the neutral gas;

kB is Boltzmann’s constant. Momentum transfer occurs principally in collisions of

the neutrals with ions and with charged grains. As the positively and the negatively
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charged particles have the same number density and the same flow speed, their com-

bined equation of momentum conservation may be written as

d

dz

[

(ρ+ + ρ−)u2
+ +

ρ+kB(T+ + T−)

μ+
+

B2

8π

]

= −An, (12)

where we have used the fact that ρ+/μ+ = ρ−/μ−, owing to the overall charge

neutrality. In Eq. (12), B is the component of the magnetic field perpendicular to

the z-direction, and B2/(8π ) is the magnetic pressure term. The magnetic field acts

directly on the charged fluid, which communicates its influence on the neutral fluid

through collision processes. If the magnetic field is assumed to be ‘frozen’ into the

charged fluid, the condition

Bu+ = B0us (13)

is satisfied, where B0 is the value of the magnetic field strength upstream of the

shock wave, in the ‘preshock’ gas, and us is the shock speed. In the reference frame

of the shock wave, in which the conservation equations are formulated, the initial

(‘upstream’ or ‘preshock’) flow speeds of the neutral and charged fluids are both

equal to the shock speed. Taking the flow to be in the positive z-direction implies

that the shock wave is propagating in the negative z-direction. We recall that the

discussion here applies to planar shock waves. Oblique MHD shock waves have

been considered by Wardle and Draine [9].

The condition of energy conservation, applied to the neutral fluid, yields

d

dz

[
ρnu3

n

2
+

5ρnunkBTn

2μn

+
ρnunUn

μn

]

= Bn, (14)

where Un denotes the mean internal energy per neutral particle, and Bn is the rate of

gain (or loss, if negative) of energy per unit volume of the neutral fluid. The internal

energy consists essentially of the rovibrational excitation energy of the H2 molecule,

whose excited state population densities can become appreciable as the temperature

and the density increase, owing to the passage of the shock wave.

In order to discriminate between the temperatures of the positively and nega-

tively charged fluids, it is necessary to separate their energy conservation relations.

Draine [10] derived these equations for the case of an MHD shock wave. However,

the difference between T+ and T− is difficult to evaluate accurately. In general, it

has only a minor influence on the dynamical and chemical structure of the shock

wave. Accordingly, we consider the combined equation of energy conservation of

the (positively and negatively) charged fluid, which takes the form

d

dz

[
(ρ+ + ρ−)u3

+
2

+
5ρ+u+kB(T+ + T−)

2μ+
+

u+ B2

4π

]

= B+ + B−, (15)

where (B+ + B−) is the rate of energy gain per unit volume of the charged fluid.
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2.2 The Role of the Magnetic Field

We have seen that the selective action of the magnetic field on the charged particles

can give rise to different flow speeds for the charged and the neutral fluids. Consider

first the neutral fluid. If a sonic point occurs in the flow, at the point where

u2
n =

5kBTn

3μn

≡ c2
s (16)

and cs is the adiabatic sound speed, then the neutral flow becomes discontinuous

and a shock occurs. In fact, this shock ‘discontinuity’ has a finite thickness, owing

to viscous forces, which is of the same order as the length scale which characterizes

elastic collisions between the neutral particles.

It is possible to integrate the conservation equations through the shock ‘discon-

tinuity’ by introducing artificial viscosity terms [11]. Providing the transition from

the pre- to the postshock gas occurs adiabatically, i.e. processes of energy transfer

(notably radiative losses) to the surrounding environment are negligible, integration

of the conservation equations through the ‘discontinuity’ automatically satisfies the

Rankine–Hugoniot relations. The latter specify the compression ratio and the tem-

perature ratio across the shock front in the limit in which the shock front may be

treated as a discontinuity; the Rankine–Hugoniot relations are derived in Sect. 3.1

below. We note that, in the case of a shock discontinuity, ‘adiabatically’ is not syn-

onymous with ‘isentropically’, i.e. with constant entropy. Within the ‘discontinuity’,

irreversible processes (viscous heating and thermal conduction) assume importance,

and the entropy increases from the preshock to the postshock gas – even though this

transition takes place adiabatically. Entropy may be considered to be a measure

of the degree of disorder in a medium, and the gas undergoes a transition, across

the discontinuity, from an ordered flow (at the shock speed, in the frame of the

shock wave) of the low-temperature preshock gas to a more slowly flowing, high-

temperature postshock gas. In essence, the kinetic energy associated with the bulk

flow velocity is partially converted into the kinetic energy associated with random

thermal motions.

Similarly, a discontinuity occurs in the flow of the charged fluid at the point at

which

u2
+ =

5kB(T+ + T−)

3(μ+ + μ−)
+

B2

4π (ρ+ + ρ−)
≡ c2

m, (17)

where cm is the magnetosonic speed in the charged fluid. As u+ ≤ us everywhere,

in the reference frame of the shock wave, a discontinuity in the flow of the charged

fluid cannot occur if

us < cm,

a condition which is satisfied in magnetically dominated flows. It follows that flows

can exist which are discontinuous in only the neutral flow variables.
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In practice, modest values of the magnetic field strength are sufficient to sup-

press the discontinuity in the flow variables of the charged fluid when the degree

of ionization of the medium is low. For example, if us = 10 km s−1 and the

charged mass density ρ+ + ρ− = 2 × 10−25 g cm−3 (corresponding to C+ ions

in a medium with a total particle density of about 50 cm−3), B ≈ 1 µG is all that is

required.

The region upstream of the discontinuity, in which the charged fluid has been

compressed along with the magnetic field, has been termed the ‘magnetic precursor’

or ‘acceleration zone’; the width of the precursor increases with the magnetic field

strength. As the shock evolves, the discontinuity in the neutral flow moves pro-

gressively downstream and weakens, until finally the discontinuity is suppressed.

Thus, for sufficiently large field strengths, the shock wave evolves from ‘jump’

or J-type, to J-type with a magnetic precursor, to ‘continuous’ or C–type [6]. To

describe this evolution rigorously, a time-dependent MHD code must be used; but

the evolution can be simulated by means of calculations which are not explicitly

time-dependent, as will be seen below. The mass density of the charged fluid,

ρ+ +ρ−, is a factor determining the magnetosonic speed and hence the width of the

acceleration zone. The endothermic reaction (2) of C+ ions with H2 molecules can

be initiated by ion–neutral drift in this zone, yielding CH+. The rapid exothermic

reactions

CH+ + H2 → CH+
2 + H (18)

and

CH+
2 + H2 → CH+

3 + H (19)

then lead to the formation of CH+
2 and CH+

3 . The molecular ions are destroyed by

dissociative recombination reactions, such as

CH+ + e− → C + H, (20)

which are believed to be rapid at the relevant temperatures. The net result is the

neutralization of an important part of the ionized component of the gas. This pro-

cess, of partial neutralization, can occur on a distance scale which is comparable

with the dimensions of the acceleration zone, resulting in a significant enhance-

ment of the width of this zone through the increase in the magnetic field term in

Eq. (17).

In diffuse clouds, the situation is rendered more complicated by photoionization

processes, notably

C + hν → C+ + e−, (21)

which restore ions to the medium and which also occur over a characteristic distance

scale which is comparable with the width of the acceleration zone. However, before
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considering further the chemistry in shock waves, in both diffuse and dense clouds,

it is appropriate to consider in more detail the ‘source terms’ (N ,S,A,B) appearing

in the MHD conservation equations.

2.3 The Source Terms

The ‘source terms’ which appear on the right-hand sides of the MHD conserva-

tion equations in Sect. 2.1 contain the micro-physics of the problem. These terms

describe the interactions between the particles of the medium, including the grains,

and the ways in which these interactions modify the number and mass densities,

momentum and energy of the charged and neutral fluids. The principal terms will

be introduced below; their hierarchy of importance depends on the context of the

problem being considered. For a detailed discussion of the source terms, the reader

may consult the paper of Draine [10].

Let us denote the net rate at which a particular atomic or molecular species, α, is

produced per unit volume by Cα; a net destruction rate corresponds to Cα < 0. The

total number of neutral particles produced per unit volume and time is

Nn =
∑

αn

Cαn
, (22)

where the subscript ‘n’ identifies the species as being neutral. Similarly, for the

positive ions

N+ =
∑

α+

Cα+ . (23)

As already noted, N+ �= −Nn, in general.

Creation of neutral mass proceeds at a rate per unit volume:

Sn =
∑

αn

Cαn
mαn

, (24)

where mαn
is the mass of the neutral species αn; the corresponding expression for

the positive ions is

S+ =
∑

α+

Cα+mα+ . (25)

In this case, S+ + S− = −Sn must be satisfied.

Momentum is transferred between the charged and the neutral fluids through ion–

neutral reactions and elastic scattering. Denoting a particular ion–neutral reaction by

β, we may write

Cα =
∑

β

Cαβ (26)



Flows in Molecular Media 169

and the associated rate of momentum transfer from the charged to the neutral

fluid is

A(i)
n =

∑

αnβ

⎡

⎣

∑

Cαnβ>0

Cαnβmαn
uβ(CM) +

∑

Cαnβ<0

Cαnβmαn
un

⎤

⎦ , (27)

where the centre-of-mass collision velocity is given by

uβ(CM) =
m iu± + mnun

m i + mn

, (28)

where m i is the mass of a (positive or negative) ion and mn is the mass of the neu-

tral. Equation (27) expresses the fact that, when a neutral is a product and hence

Cαnβ > 0, it is created at the centre-of-mass velocity of the reaction β. On the other

hand, when a neutral is a reactant (Cαnβ < 0), it is removed whilst moving with the

velocity of the neutral fluid, un.

Osterbrock [12] derived an expression for the cross section for momentum trans-

fer in a collision between a charged and a neutral particle from considerations of

the long-range charge-induced dipole interaction between the colliding pair; the

expression which Osterbrock derived is

σin = 2.41π

[
e2αn

m inv
2
in

] 1
2

, (29)

where e is the electron charge, αn is the polarizability of the neutral, m in =
m imn/(m i + mn) is the reduced mass of the ion–neutral pair and vin is the relative

collision speed. Expression (29) exceeds by 20% the ‘Langevin’ cross section which

is often used to estimate the rates of ion–neutral chemical reactions.

Equation (29) has been shown to be valid at low collision speeds but to under-

estimate the momentum transfer at high collision speeds [13]. The polarizabilities

of the principal constituents of the neutral fluid are: atomic hydrogen, αH = 4.5

a3
0 ; molecular hydrogen, αH2

= 5.2 a3
0 ; and helium, αHe = 1.4 a3

0 , where a0 is the

Bohr radius, the atomic unit of length; the polarizabilities of H and H2 are similar

in magnitude and substantially larger than that of He.

The rate of transfer of momentum to the neutral fluid, owing to elastic scattering

on the ions, is given by

A(ii)
n =

ρnρi

μn + μi

〈σv〉in(ui − un), (30)

where

〈σv〉in = 2.41π

(
e2αn

μin

) 1
2

(31)
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is the corresponding rate coefficient; μin = μiμn/(μi + μn) is the reduced mass,

evaluated using the mean molecular weights of the ionized and neutral fluids.

Momentum transfer between the neutral gas and the charged grains is important

in dense clouds, where the degree of ionization of the gas is low. In this case, the

cross section may be taken approximately equal to the geometrical cross section of

the grain, πa2
g , where ag is the grain radius. (There is a correction to the geomet-

rical cross section, significant at low collision speeds, arising from the polarization

of the neutral by the charged grain [14]). As the the collision speed is, to a good

approximation, equal to the ion–neutral drift speed, |ui − un|, and μg >> μn, the

rate of momentum transfer between the neutral gas and the charged grains (in dense

clouds, most of the grains have a single negative charge) is

A(iii)
n = ρnngπa2

g |ui − un|(ui − un). (32)

The total rate of momentum transfer is An = A(i)
n + A(ii)

n + A(iii)
n .

Various physical processes lead to energy exchange between the charged and the

neutral fluids. Chemical reactions are responsible for kinetic energy transfer from

the charged to the neutral fluid at a rate per unit volume:

B(i)
n =

∑

αnβ

⎡

⎣

∑

Cαnβ>0

Cαnβ

1

2
mαn

u2
β(CM) +

∑

Cαnβ<0

Cαnβ

1

2
mαn

u2
n

⎤

⎦ . (33)

An analogous expression holds for transfer of kinetic energy from the neutral to

the charged fluid; the kinetic energy of the electrons may be neglected, in compari-

son with that of the ions.

When considering heat transfer between fluids, a distinction has to be made once

again between formation (Cαnβ > 0) and destruction (Cαnβ < 0) processes. When an

ion and an electron at temperatures T+ and T−, respectively, dissociatively recom-

bine to form two neutrals, as in the reaction

CH+ + e− → C + H, (34)

an amount of heat 3kB(T+ + T−)/2 is transferred to the neutral fluid. On the other

hand, an amount of heat 3kBTn/2 is lost by the neutral fluid through photoionization

as in

C + hν → C+ + e− (35)

The net rate of thermal energy transfer to the neutral fluid is

B(ii)
n =

∑

αnβ

⎡

⎣

∑

Cαnβ>0

Cαnβ

3

2
kB

T+ + T−

2
+
∑

Cαnβ<0

Cαnβ

3

2
kB

Tn

2

⎤

⎦ . (36)



Flows in Molecular Media 171

Dissociative recombination and photoionization are the most rapid and impor-

tant processes determining the degree of ionization in shocks propagating in diffuse

interstellar clouds. In the interiors of dense clouds, the degree of ionization is lower,

owing to the absence of ionizing photons, which are absorbed and scattered by dust

in the outer layers; cosmic ray ionization takes over but is a slow process.

When photoionization does occur, the corresponding heating rate is given by

B(iii)
− =

∑

α

nα

∫ νH

να

4π Jν

hν
aν(α)(hν − hνα) dν, (37)

where Jν is the mean radiation intensity at frequency ν, aν(α) is the frequency-

dependent photoionization cross section of species α and να is the photoionization

threshold frequency. The integral extends to the Lyman limit in atomic hydrogen,

hν = 13.598 eV; photons of higher energy tend to be absorbed (by atomic hydro-

gen) in the immediate vicinities of the sources of the ultraviolet radiation.

Chemical reactions also affect the thermal balance of the medium by virtue of

their energy defects, ΔE . The corresponding rate of heating of the neutral fluid is

B(iv)
n =

∑

αnβ

∑

Cαnβ>0

Cαnβ

Mβ − mαn

Mβ

ΔEβ, (38)

where Mβ is the total mass of the products of reaction β, including mαn
. The factor

(Mβ − mαn
)/Mβ determines the partition of energy amongst the reaction products,

with the lighter products carrying off more of the energy, ΔEβ , released in the

reaction.

Elastic scattering of the neutrals on the ions results in the exchange of energy

between the fluids. The neutral fluid is heated through this process at a rate given by

B(v)
n =

ρnρi

μnμi

〈σv〉in

2μnμi

(μn + μi)2

[
3

2
kB(Ti − Tn) +

1

2
(ui − un)(μiui + μnun)

]

, (39)

where the rate coefficient for ion–neutral elastic scattering, 〈σv〉in, is given by

Eq. (31). Inspection of Eq. (39) shows that B(v)
i = −B(v)

n . The corresponding rate of

energy transfer from the charged grains to the neutral fluid is

B(vi)
n = ρnngπa2

g |ui − un|(ui − un)ui, (40)

where we assume μg >> μn.

Collisional excitation, followed by radiative decay at an optically thin wave-

length, is an important source of energy loss from the gas and must be taken into

account. Particularly significant is the collisional excitation of rovibrational tran-

sitions in molecules and of fine structure transitions in atoms and ions, discussed

in [15]. The rates of cooling processes are proportional to the number densities of

the coolants, which depend in turn on the chemical reactions occurring within the

shocked gas.
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In shocks which give rise to appreciable collisional dissociation of molecular

hydrogen, the reformation of H2 in the cooling flow of the shock wave represents

a significant heating process. Molecular hydrogen forms on grains, and the H2

molecules are returned to the gas phase with a finite amount of translational energy;

this is subsequently converted to heat through elastic collisions with the other con-

stituents of the gas. The rate of heating is proportional to the rate of formation of H2

and to the translational energy of the molecule as it leaves the grain. The total energy

released when a molecule of hydrogen forms is 4.48 eV, the molecular binding

energy. It is often assumed that this energy is partitioned, in equal fractions of 1
3
, as

internal (rovibrational) and translational energies of the molecule, and with 1
3

being

recovered by the grain in phonon excitation. Whether this assumption is correct

remains to be established, probably by means of experiments in the laboratory.

3 The Structure of Interstellar Shock Waves

In the previous section, we introduced the MHD conservation equations applicable

to one-dimensional, steady-state, multi-fluid flows; these equations enable the struc-

ture of C-type shock waves to be calculated. However, shock waves in the interstellar

medium are not necessarily, perhaps not normally, of C-type. When a shock wave

is produced, for example, in a collision between interstellar clouds at supersonic

relative speed, the shock wave is initially of J-type. Depending on the shock speed

and the magnetic field strength, this J-type shock wave may develop a magnetic

precursor and ultimately become C-type.

The shock speed, us, is an important parameter. The kinetic energy flux associ-

ated with the shock wave, 1
2
ρu3

s , increases rapidly with us. Some of this energy is

used to heat the gas. When the temperature, T , exceeds a few thousand degrees,

molecular hydrogen begins to be collisionally dissociated. Because H2 is a major

coolant, its destruction leads to a further increase in T . Ultimately, the adiabatic

sound speed cs = (γ kBT/μ)
1
2 , where γ is the ratio of specific heats at constant

pressure and volume, approaches the flow speed and a discontinuity occurs in the

flow: see Sect. 2.2.

From the conservation relations presented in the previous section, the equations

which are applicable to the ‘discontinuity’ in a J-type shock wave and to the cooling

flow behind the discontinuity, may be derived. As we have already noted, the so-

called discontinuity has a finite width, owing to the effects of viscosity and thermal

conduction, which are characterized by length scales comparable with the mean

free path for elastic scattering. The process of elastic scattering tends to equalize

the values of parameters, such as u and T , associated with the flows of the various

fluids. Accordingly, we shall assume single-fluid flow in what follows; but we note

that this assumption is not valid for the grains, particularly the more massive grains,

which have large inertia.
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The conservation equations for single-fluid flow are obtained by adding the equa-

tions derived in Sect. 2.1 for multi-fluid flow, i.e. for the neutral, positively and

negatively charged fluids. The sums of the source terms appearing on the right-hand

sides of the resulting equations of conservation of mass and momentum are identi-

cally 0. However, the number density and the energy of the flow are not conserved,

in general. The number density can vary because of reactions, such as the collisional

dissociation of H2:

H + H2 → H + H + H (41)

in which there are two reactants but three products. Energy is lost from the flow in

the form of radiation, as mentioned already. Thus, the conservation equations may

be written in the form

d

dz

(
ρu

μ

)

= N , (42)

d

dz
(ρu) = 0, (43)

d

dz

[

ρu2 +
ρkBT

μ
+

B2

8π

]

= 0 (44)

and

d

dz

[
ρu3

2
+

5ρukBT

2μ
+

ρuU

μ
+

u B2

4π

]

= B, (45)

where

Bu = B0us

and where the subscript ‘0’ denotes quantities in the preshock gas. Equivalently, we

have [using Eq. (43)] that

d

dz

(
B

ρ

)

= 0 (46)

when the magnetic field is frozen in the fluid.

The solution of Eq. (43), (44), (45) and (46) for the flow variables u, ρ, T and

B, across the discontinuity and in the cooling flow, was considered by Field et al.

[1]. If the molecular weight of the gas varies owing to reactions such as (41) above,

Eq. (42) must also be included. We consider first the discontinuity, then the cooling

flow.
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3.1 The ‘Discontinuity’ in a J-type Shock Wave

We have already noted that the width of the ‘discontinuity’ is determined by viscos-

ity and thermal conduction, and hence by the distance scale for elastic scattering pro-

cesses. Chemical reactions, including collisional dissociation (41), and collisional

processes leading to the emission of radiation, and hence cooling, are all inelastic

processes, for which the characteristic distance scales are larger, by at least an order

of magnitude, than the corresponding elastic scattering processes. Thus, within the

shock ‘discontinuity’, the source terms N and B in Eq. (42) and (45), respectively,

can be taken equal to 0. Furthermore, the flux of internal energy is constant, as the

populations of internal energy states do not change. In the context of the equation

of energy conservation, the shock transition (‘discontinuity’) may be qualified as

adiabatic, i.e. there is no exchange of energy with the shock’s environment. Viscos-

ity and thermal conduction are significant only within the shock transition, where

the velocity and thermal gradients are large; these processes (viscosity and thermal

conduction) are not included in the above equations, as they can be neglected on

either side of the ‘discontinuity’. Thus, relations can be obtained between the flow

variables immediately downstream and upstream of the discontinuity. These equa-

tions – commonly referred to as the Rankine–Hugoniot relations – are

ρ1u1 = ρ0us, (47)

ρ1u2
1 +

ρ1kBT1

μ
+

B2
1

8π
= ρ0u2

s +
ρ0kBT0

μ
+

B2
0

8π
, (48)

ρ1u3
1

2
+

5ρ1u1kBT1

2μ
+

u1 B2
1

4π

=
ρ0u3

s

2
+

5ρ0uskBT0

2μ
+

us B2
0

4π
, (49)

B1

ρ1

=
B0

ρ0

, (50)

where the subscript ‘0’ denotes the preshock gas, upstream of the discontinuity,

‘1’ denotes the postshock gas, downstream of the discontinuity and the molecular

weight μ is constant. Equations (47), (48), (49) and (50) may be combined to yield

a quadratic equation for the compression ratio, ρ1/ρ0, across the discontinuity:

2(2 − γ )b

(
ρ1

ρ0

)2

+ [(γ − 1)M2 + 2γ (1 + b)]
ρ1

ρ0

− (γ + 1)M2 = 0. (51)

In Eq. (51), M is the shock Mach number, the ratio of the shock speed, us, to the

isothermal sound speed in the preshock gas, (kBT0/μ)
1
2 ; b = B2

0/(8πp0) is the ratio

of the magnetic pressure, B2
0/(8π ), to the gas pressure, p0 = ρ0kBT0/μ, in the

preshock gas. The ratio of specific heats at constant pressure and volume, γ , should

be taken equal to 5/3, the value appropriate to a gas with only translational degrees
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of freedom; this is because the internal energy of molecules such as H2 does not

have time to adjust to the changes in the temperature and density across the shock

discontinuity. This adjustment occurs in the cooling flow, where the equations for

the populations of the rovibrational levels of H2 should be solved in parallel with

the hydrodynamic conservation equations in order to follow correctly the variation

in the internal energy, U .

In the absence of a magnetic field (B0 = 0 = B1), the compression ratio across

the shock discontinuity is given by

ρ1

ρ0

=
p0 + h2 p1

p1 + h2 p0

, (52)

where h2 = (γ + 1)/(γ − 1). The pressure ratio across the shock discontinuity,

p1/p0, is related to the isothermal Mach number in the preshock gas by

M2 =
γ + 1

2

p1

p0

+
γ − 1

2
. (53)

The processes which determine the thickness of the shock transition – viscosity

and thermal conduction – are irreversible and give rise to an increase in entropy

across the shock front. It can be shown that, as a consequence, the condition p1 >

p0 must apply; it follows from (52) that ρ1/ρ0 > 1. Thus, both the pressure and

the density of the gas increase as the gas traverses the discontinuity. The quadratic

Eq. (51) has two roots, in general, but only one of the solutions corresponds to a

compression shock, in which ρ1/ρ0 > 1.

Equation (52) shows that, in the limit of p1 >> p0, ρ1/ρ0 → h2 = 4 for

γ = 5/3. From Eq. (47), we see that, in this limit,

u1

us

=
ρ0

ρ1

=
1

4
.

Thus, in the reference frame of the shock wave, the gas flows into the shock front

at speed us and out at speed us/4. In an inertial frame in which the preshock gas is

at rest, the gas is accelerated at the shock front to a speed 3us/4.

The temperature rise at the discontinuity is given by

T1

T0

=
(p1 + h2 p0)

(p0 + h2 p1)

p1

p0

. (54)

Thus, in the limit of p1 >> p0, T1/T0 → (p1/h2 p0). Unlike the compression

ratio, the temperature ratio across the shock wave is unlimited.

The presence of a transverse magnetic field moderates the compression and the

increase in temperature which occur at the shock front. As we have already seen,

if the magnetic field is sufficiently strong, the discontinuity can be suppressed alto-

gether, in C-type shock waves.
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3.2 The Cooling Flow of a J-type Shock Wave

If sufficiently hot, the compressed gas which flows out of a shock discontinuity

is able to excite molecules, atoms and ions. These ‘cooling’ processes cause the

temperature of the gas to fall whilst it continues to be compressed. By the time that

the gas has cooled to its equilibrium (postshock) temperature, the total compression

ratio, relative to the preshock gas, can be much greater than the maximum value of 4

at the shock discontinuity. The presence of a finite, transverse magnetic field limits

the degree of compression of the gas.

The temperature profile computed for a J-type shock wave with a speed us = 25

km s−1, propagating into gas of (preshock) density nH = n(H) + n(H2) + n(H+) =
104 cm−3, in the absence of a magnetic field, is shown in Fig. 1. The independent

variable in this figure is the flow time,

t =
∫

1

u
dz,

where z is the direction of flow and u is the flow speed, in the shock frame. In

these calculations, the shock ‘discontinuity’ has a small but finite width, owing to

artificial viscosity terms having been introduced into the conservation equations;

these equations can then be integrated from the preshock through to the postshock,

equilibrium gas.

The initial jump in temperature at the discontinuity is sufficient for collisional

dissociation to take place, as may be seen from Fig. 1, where the abundances of H,

H2 and H+, relative to nH, are plotted. In fact, molecular hydrogen is rapidly colli-

sionally dissociated in the hot gas behind the ‘discontinuity’, on a flow timescale of

Fig. 1 The temperature profile computed for a J-type shock wave with a speed us = 25 km s−1,

propagating into gas of (preshock) density nH = n(H) + n(H2) + n(H+) = 104 cm−3; NH is the

corresponding column density. The fractional abundances of H, H2 and H+ are also plotted. In the

left-hand panel, the abscissa (the flow time) is on a logarithmic scale
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Fig. 2 Contributions to the total energy flux as functions of the flow time, for a J-type shock wave

with a speed us = 15 km s−1, propagating into gas of (preshock) density nH = 105 cm−3 in the

absence of a magnetic field

the order of 1 year. The main coolants of the gas are then atoms and ions, notably

atomic oxygen, through its fine structure transitions at 63 and 147 μm. In the cool-

ing flow, H2 reforms (on grains), and the associated heating of the gas gives rise

to the ‘knee’ in the temperature profile, apparent in the right-hand panel of Fig. 1.

Finally, after approximately 500 year, the kinetic temperature reaches its postshock

equilibrium value, of the order of 10K. The total compression ratio in this case

approaches 104: there is no magnetic field to moderate the compression of the gas.

Referring to Eq. (45), we see that, in the absence of a magnetic field, contri-

butions to the energy flux arise from: (i) the kinetic energy of the flow; (ii) the

thermal energy of the gas; (iii) the internal energy of the gas; and (iv) radiative

losses (incorporated in B). In the preshock gas, (i) dominates. Immediately behind

the ‘discontinuity’, (ii) is the major term, with some contribution from (iii) at the

beginning of the cooling flow. Finally, radiative losses take over and the gas cools

to its postshock, equilibrium state. This transformation of one form of energy into

another through a J-type shock wave is illustrated in Fig. 2.

3.3 C-Type Shock Waves

The interaction of the gas and the grains with the magnetic field is crucially impor-

tant for the development of C-type shock waves. The field couples directly to the

charged fluid and thence to the neutral fluid, which contains most of the mass, via

collision processes (cf. Sect. 2). The strength of the coupling between the charged
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and the neutral fluids depends on the degree of ionization of the gas and hence on

the rates of chemical reactions which modify the degree of ionization within the

shock wave. The coupling between the charged and neutral fluids also depends on

the fraction of the grains which is (principally negatively) charged. Although the

number density of the grains is much smaller than that of the gaseous ions, their

mass density is, in dark clouds, much larger.

By way of illustration of the importance of chemical reactions in this context,

Fig. 3 compares the fractional ionization of the gas and the thermal profiles com-

puted for a C-type shock wave of speed us = 10 km s−1 which propagates into

gas of preshock density nH = 103 cm−3 and in which the tranverse magnetic field

strength is B0 = 25 μG; in one calculation, chemical reactions were neglected, and,

in the other, they were included. As may be seen from this figure, the degree of

ionization is modified considerably by the chemistry, both within the shock wave

and in the postshock, equilibrium gas. Endothermic reactions between atomic ions

Fig. 3 The fractional ionization of the gas and the thermal profiles in a C-type shock wave of

speed us = 10 km s−1, which propagates into gas of preshock density nH = 103 cm−3 in which the

transverse magnetic field strength B0 = 25 µG
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and H2 are activated by the ion–neutral drift speed within the shock wave, and the

molecular ions which are produced are able to recombine rapidly with electrons.

Thus, the fractional ionization falls within the shock wave when the chemistry is

included. On the other hand, when the chemistry is neglected, the fractional ion-

ization increases, owing to the differential compression of the ions, before falling

back to its equilibrium value in the postshock gas. To a lower degree of ionization

corresponds a more extended shock wave, in which the neutral fluid has a lower

maximum temperature.

Figure 3 also shows that the time of flow through a C-type shock wave, from the

preshock to the postshock, equilibrium gas, is of the order of 105 year; this is very

much greater than in a J-type shock wave of comparable speed. As the time to reach

steady state cannot be less than the time of flow through the shock wave, it follows

that C-type shock waves do not attain steady state under conditions, such as those

in jets, in which the dynamical timescales are much less than 105 year.

In order to contrast the flow times through J- and C-type shock waves, we plot,

in Fig. 4, the thermal and density profiles computed in the case of a shock wave of

speed us = 30 km s−1, propagating into gas of preshock density nH = 104 cm−3; in

the upper panel, the transverse magnetic field strength, B0 = 0, and the shock wave

is J-type, in the lower panel, B0 = 100µG, and the shock wave is C-type, in steady

state. The difference in the times of flow through the shock wave and into the post-

shock region is striking: the flow time is 2 orders of magnitude larger in the case of

the C-type shock wave. On the other hand, the peak kinetic temperature is an order

of magnitude higher and the density of the postshock gas is 3 orders of magnitude

larger in the J-type shock wave. We conclude that the presence of a magnetic field

transforms the physical – and hence the chemical – steady-state structure of a shock

wave.

In order to determine rigorously the structure of shock waves in their evolution

to a steady state, a time-dependent MHD code is necessary. Such codes have been

developed, but they are still restricted in the range and complexity of the physico-

chemical processes which can be incorporated. An alternative approach, which

provides an approximation to the time-dependent shock structure that is acceptable

in the context of many applications, will be presented below.

When there is a disturbance which propagates at supersonic speed in a medium, a

shock wave can be produced. Stellar winds, jets, turbulence and collisions between

interstellar clouds, for example, are all susceptible to generating shock waves. The

concept of ‘steady state’ is relevant only if the mechanism responsible for producing

the shock wave endures for at least the time required for the shock wave to attain

its equilibrium state. Evanescent phenomena must, by their nature, be studied by

means of an explicitly time-dependent model. The energy source which creates and

maintains a shock wave may be compared with the ‘piston’ that can be used to

generate shock waves in the laboratory. Let us denote the speed of propagation of

the piston by up. We shall assume that up is constant and show, from considerations

of the continuity of the flow, that the shock front propagates at a speed, us, which

somewhat exceeds up.
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Fig. 4 Comparing the thermal and density profiles, in steady state, of a shock wave of speed

us = 30 km s−1 which propagates into gas of preshock density nH = 104 cm−3, in which the

transverse magnetic field strength B0 = 0 in the upper panel and B0 = 100 µG in the lower panel

As is customary, we apply the equation of continuity in the frame of the shock

wave, i.e. the frame in which the shock front is at rest; this is achieved by subtracting

the shock velocity, us, from velocities in an inertial frame, usually taken to be the

frame of the preshock gas. Referring to Eq. (47), we see that

u1 =
us

(ρ1/ρ0)
, (55)
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where ρ0, ρ1 denote the preshock and postshock gas density, respectively, and u1 is

the postshock flow speed; the ratio (ρ1/ρ0) is the compression factor. In the inertial

frame, the preshock gas is at rest and the postshock gas flows at speed

us −
us

(ρ1/ρ0)

in the direction of propagation of the shock front. At the surface of the piston, the

gas is moving with the speed of the piston, up, and hence

up = us

[

1 −
1

(ρp/ρ0)

]

, (56)

where ρp is the value of ρ1 at the surface of the piston. It follows from (56) that

us > up.

Fig. 5 Temperature and density profiles as functions of position and time for a shock wave of

speed us = 10 km s−1, propagating into gas of density nH = 103 cm−3 in which the transverse

magnetic field strength B0 = 25 μG. The shock wave advances from left to right until a stationary

state is finally attained. The origin of the position coordinate, z, is at the ‘piston’
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Fig. 6 Velocity and temperature as functions of flow time for a J-type shock wave with a magnetic

precursor: the shock speed us = 25 km s−1; the preshock gas density nH = 104 cm−3; and the

transverse magnetic field strength in the preshock gas B0 = 100 µG

If the shock is initially J-type, the compression factor at the discontinuity is

(ρ1/ρ0) = 4, in the limit of large Mach numbers. Then, us = 4up/3, and the shock

discontinuity moves away from the piston with which it was initially in contact. In

the cooling flow which develops between the discontinuity and the piston, the gas

is compressed further and the speed of the shock front decreases towards that of the

piston (which is assumed constant). By the time that the compression factor at the

surface of the piston has become large
[

(ρp/ρ0) >> 1
]

, the piston and the shock

front are travelling at the same speed. From Eq. (56), it may be seen that the speed
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with which the shock front moves away from the piston, us − up = us/(ρp/ρ0), is

also the speed of fluid flow (in the reference frame of the shock wave) at the surface

of the piston.

If the transverse magnetic field strength is sufficiently large, a magnetic precur-

sor develops upstream of the shock discontinuity and preheats the gas. As a con-

sequence, the sound speed in the gas immediately upstream of the discontinuity

increases and the Mach number falls, i.e. the shock discontinuity weakens. By the

time that steady state is attained, the discontinuity may have disappeared altogether,

in which case the structure has become pure C-type; this evolution is illustrated in

Fig. 5. This figure shows also the shock front gradually separating from the ‘piston’

as time progresses; the speed of the shock front, relative to the piston, decreases as

the compression factor increases.

The evolution of the shock wave from initially pure J-type to J-type with a mag-

netic precursor, seen in Fig. 5, to finally C-type, may be simulated by introducing

a discontinuity in the flow at a point in the steady-state profile which is located

increasingly downstream as time advances. The time is given by the time of flow of

a fluid particle through the precursor to the discontinuity,

t =
∫

1

u
dz.

The steady-state structure of the shock wave ‘unfolds’ as time progresses. Com-

parisons with the results of explicitly time-dependent MHD calculations ([7, 8])

have shown that the evolution of the shock wave is satisfactorily described by means

of the approximation outlined above. An example of such a composite shock struc-

ture is given in Fig. 6.

4 Shock Waves in Dark Clouds

The characteristics and spectroscopic signatures of J-type shock waves propagating

in molecular media have been studied for many years. In the cooling flow behind the

discontinuity, molecules, atoms and ions can be collisionally excited in the shock-

heated gas. Rovibrational molecular transitions, fine structure and other ‘forbidden’

atomic and ionic transitions are emitted and, when detected, provide diagnostic

information on the medium.

The physical state and chemical composition of the cooling flow depend on

the shock speed, the transverse magnetic field strength in, and the density of, the

preshock gas. With increasing shock speed, us, the maximum postshock tempera-

ture increases to values (of the order of 103 K) at which the collisional excitation and

dissociation of molecular hydrogen begin to be significant. As us increases further

and the temperature reaches approximately 104 K, electronic excitation of atomic

hydrogen occurs and, ultimately, H is collisionally ionized. The ultraviolet radiation

produced by the radiative decay of the electronically excited states of H, which

are populated either by collisional excitation or by radiative recombination of H+
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with electrons, becomes sufficiently intense to pre-ionize the gas upstream of the

shock discontinuity; the shock wave is then said to have a radiative precursor. If

the transverse magnetic field is weak or absent, shock speeds us ≈ 25 km s−1 are

sufficient to cause almost complete dissociation of H2 immediately downstream of

the discontinuity, where the kinetic temperature is highest.

In Fig. 7 are illustrated the contributions of various atomic and molecular species

to the cooling of a J-type shock wave of speed us = 25 km s−1, preshock density

nH = 104 cm−3 and transverse magnetic field strength B0 = 0. The collisional dis-

sociation of molecular hydrogen releases atomic hydrogen into the hot gas, leading

to the destruction of other molecular species. For example, the reactions

H2O + H → OH + H2

and

OH + H → O + H2

return oxygen to atomic form. Through its fine structure transitions at 63 µm and

147 µm, O then becomes the principal coolant of the gas. As the gas cools down,

first H2 reforms, and then other molecules, such as H2O and CO. The time required

for the medium to reach its postshock equilibrium temperature is approximately 500

year. Thus, in dynamically young objects, even J-type shock waves may not have

had sufficient time to reach steady state.

As the shock speed increases beyond us = 25 km s−1, the extent of the cooling

flow (and the time required for the gas to attain its postshock equilibrium temper-

ature) begins to decrease: see Fig. 8. This reversal occurs because the degree of

ionization of atomic hydrogen, and consequently the fractional electron abundance,

Fig. 7 The rates of cooling by the principal coolants for a J-type shock wave with a speed us =
25 km s−1, propagating into gas of (preshock) density nH = n(H) + n(H2) + n(H+) = 104 cm−3,

in the absence of a magnetic field; NH is the corresponding column density. In the left-hand panel,

the abscissa (the flow time) is on a logarithmic scale
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Fig. 8 Dependence of the duration of the cooling flow on the shock speed, for gas of (preshock)

density nH = 104 cm−3, in the absence of a magnetic field

increase rapidly with us above approximately 25 km s−1. Cooling of the medium

owing to electron collisional excitation of atomic hydrogen, principally the Ly α

transition, then becomes important.

The populations of the rovibrational levels of H2 do not respond instantaneously

to the changes in temperature and density which occur at and behind the shock

discontinuity. Indeed, as we have already seen, excitation of the internal degrees

of freedom of H2 is insignificant within the shock ‘discontinuity’, where the flow

variables change adiabatically. In the cooling flow, immediately behind the discon-

tinuity, the level populations respond to changes in the temperature and density on a

timescale which, by definition, is comparable with the local cooling time (on which

the temperature changes significantly), as H2 is the principal coolant of the gas.

Under these conditions, it is essential to integrate the differential equations gov-

erning the H2 level populations in parallel with the dynamical equations and the

chemical rate equations.

In the presence of a transverse magnetic field of sufficient strength, an initially

J-type shock wave develops a magnetic precursor and can ultimately become C-

type. In order for a precursor to develop, the magnetosonic speed, cm [Eq. (17)],

must exceed the shock speed, us. As the physical conditions in the preshock gas

determine the value of the magnetosonic speed, the requirement that us < cm sets

an upper limit on the speed of shock waves which can become C-type.

The physical conditions in the preshock gas, notably the degree of ioniza-

tion, depend on the rate of cosmic ray ionization of hydrogen, ζ . Most of the

positive charge is associated with atomic and molecular ions in the gas. How-

ever, contributions to the negative charge arise not only from the free electrons
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but also from negatively charged grains and, possibly, from anions of polycyclic

aromatic hydrocarbons (PAH). The distribution of the negative charge amongst

free electrons, grains and PAH depends on the fractional abundance of the PAH

molecules and on the rates of electron attachment and detachment reactions, as

well as the rates of recombination of positive ions with electrons on the sur-

faces of negatively charged grains; all these parameters are subject to significant

uncertainties.

In Fig. 9 are plotted the values of the magnetosonic speed computed for a range

of densities of the preshock gas and of fractional abundances of PAH molecules; the

cosmic ray ionization rate is ζ = 1 × 10−17 s−1 and the transverse magnetic field

strength B0 = [nH]0.5, where nH is in units of cm−3 and B0 is in μG; this functional

dependence of B0 on nH ensures that the magnetic energy density in the preshock

gas remains proportional to the thermal energy density, at a given temperature.

Also plotted in Fig. 9 is the critical shock speed at which the degree of collisional

dissociation of H2, the principal coolant, becomes sufficient for a thermal runaway

to occur. There results a sonic point in the flow (owing to the rapidly rising temper-

ature and hence sound speed), and the shock becomes J-type. It may be seen from

Fig. 9 that, for nPAH/nH = 10−6 and nH > 104 cm−3, the upper limit to the possible

speed of a C-type shock wave is determined by the collisional dissociation of H2,

whereas, for nH < 104 cm−3, it is determined by the magnetosonic speed in the

preshock gas. The limit imposed by the magnetosonic speed becomes more strin-

gent for nPAH/nH < 10−6. Although still uncertain, the fraction of carbon which is

Fig. 9 The magnetosonic speed in preshock gas of density 103 ≤ nH ≤ 105 cm−3 and fractional

abundance of PAH 10−8 ≤ nPAH/nH ≤ 10−6; the cosmic ray ionization rate is ζ = 1 × 10−17 s−1

and the transverse magnetic field strength B0 µG = [nH]0.5, where nH is in units of cm−3
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believed to exist in ‘very small grains’ sets an upper limit to the fractional abundance

of the PAH, namely nPAH/nH ∼< 10−6.

The steady-state thermal, velocity and density profiles of the neutral and charged

fluids for an illustrative C-type shock wave are shown in Fig. 10. These profiles

display a number of characteristics of C-type shock structure: the initially rapid

decoupling of the velocity of the charged fluid from that of the neutrals, followed

by their recoupling on a timescale of the order of 103 year for the model shown; the

initial increase in the fractional ionization, owing to the differential compression of

the charged fluid, followed by a decrease (by approximately 3 orders of magnitude

in the model shown) to its postshock value; the decoupling of the temperatures of

the charged fluids from the temperature of the neutrals and, over a more restricted

time range, the decoupling of the temperature of the ions from that of the electrons.

The electron temperature lies between the temperatures of the ions and the neutrals:

the much greater abundance of the neutrals compensates for the stronger thermal

coupling of the electrons to the positive ions (which is mediated by the attractive

Coulomb force). Owing to the differential compression of the charged fluid and

the initial rise in Te, the rate of electron attachment to grains is sufficient to ensure

that the grains are predominantly negatively charged within the shock wave. The

rate equations which determine the grain charge must be solved in parallel with the

equations which describe the dynamical structure of the shock wave, because the

chemistry and the dynamics interact strongly.

5 Shock Waves in the Presence of an Ultraviolet Radiation Field

The interstellar background ultraviolet radiation field permeates the diffuse inter-

stellar gas and ionizes species with ionization potentials less than that of atomic

hydrogen. Consequently, in diffuse gas, the most abundant ion is C+. It has already

been mentioned that endothermic reactions, such as

C+ + H2 → CH+ + H − 4640K

can become significant in shocked gas; this is true also of reactions such as

O + H2 → OH + H

which is endothermic and has a barrier, and of

OH + H2 → H2O + H

which has a barrier. In a medium which is rich in molecular hydrogen, the reaction

of C+ with H2 is followed rapidly by the exothermic hydrogenation reactions

CH+ + H2 → CH+
2 + H
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Fig. 10 The steady-state profiles of (a) temperature, (b) velocity (Δv = vn − vi) and (c) density

of the neutral and charged fluids, for an illustrative C-type shock wave of speed vs = 50 km s−1,

preshock density nH = 104 cm−3 and transverse magnetic field strength B0 = 100 µG
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and

CH+
2 + H2 → CH+

3 + H

beyond which the sequence proceeds much more slowly, either by radiative associ-

ation

CH+
3 + H2 → CH+

5 + hν

or by the strongly endothermic reaction

CH+
3 + H2 → CH+

4 + H − 32,500K

All of the hydrocarbon ions which are formed undergo dissociative recombina-

tion reactions with electrons, such as

CH+
n + e− → CHn−1 + H,

CH+
n + e− → CHn−2 + H2,

CH+
n + e− → CHn−2 + H + H,

the net effect being the neutralization of C+ ions in the gas.

The key reaction in the above hydrogenation cycle is C+(H2, H)CH+, which is

endothermic by 4640K. Ambipolar diffusion in shock waves will drive this reaction

once the relative kinetic energy of the ions and the neutrals is comparable with the

endothermicity, i.e. once μin(ui−un)2/(2kB) ≈ 4640K, where μin = μiμn/(μi+μn)

is the reduced mass of the C+-H2 pair. This relation implies that the relative drift

speed,(ui − un), should be at least 6 or 7 km s−1. Such speeds are readily attained

in shock waves with speeds us ∼> 10 km s−1 in which the magnetic field strength in

the preshock gas, B0, is a few μG.

Photoreactions prevent ambipolar diffusion leading to the complete neutraliza-

tion of the C+ component of the ionized gas. The CHn molecules which are the

products of the above cycle are photodissociated:

CHn + hν → CHn−1 + H,

CHn + hν → CHn−2 + H2,

and the atomic carbon which is produced is then photoionized:

C + hν → C+ + e−.

As a result of these reactions, C+ ions are restored to the gas over a distance

scale which is comparable with the MHD shock width. Thus, the C+ density in such

a shock wave first rises owing to the compression of the ionized gas, then falls as

a result of ion–molecule reactions and dissociative recombination, and finally rises

again as photoreactions take over. This behaviour is illustrated in Fig. 11. The pre-

and postshock values of the density of C+ ions are determined by the equilibrium
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Fig. 11 The densities of C-bearing ions through a C-type shock wave of speed 12 km s−1, prop-

agating into a diffuse interstellar cloud in which the preshock density nH = 20 cm−3 and the

transverse magnetic field strength B0 = 5 µG

between the rate of photoionization of C and the reverse process, namely, radiative

recombination of C+ with electrons.

It has already been mentioned that, in shock-heated gas, the chemistry of oxygen

is initiated by the reaction O(H2, H)OH which has a barrier of 2980K (which is

larger than the endothermicity of approximately 960K). The subsequent reaction,

OH(H2, H)H2O, has a smaller barrier of 1490K. Photodissociation of H2O and OH

eventually returns O to the gas. Reactions of C+ and CH+
n with O and OHn lead

to the formation of CO+ and HnCO+, which recombine dissociatively with elec-

trons. The molecules which are so produced are ultimately photodissociated into C

and O. The end result is the restoration of oxygen to its atomic form in the postshock

gas. However, the facility with which water is produced in shock waves, through

the reactions O(H2, H)OH and OH(H2, H)H2O, results in fractional abundances of

H2O which exceed that observed in shocked molecular gas associated with IC443 (a

supernova remnant) by the SWAS satellite [16]. Thus, although the transformation

of atomic oxygen into water in shock waves was believed to be well understood, the

models failed their first observational test. Other surprises of this type undoubtedly

await us.

6 Diagnostics of Shock Waves: The H2 Excitation Diagram

Because of the high abundance of H2 in the ambient molecular gas into which inter-

stellar jets propagate, the simulation of the rovibrational spectrum of H2 by means of

shock models is a unique diagnostic tool for outflow sources. Observations and cal-
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Fig. 12 (continued)
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culations of the emission line intensities are usually confronted through the medium

of the ‘excitation diagram’, which derives from considerations of thermodynamic

equilibrium, when the population n of the rovibrational level (v, J ), relative to the

ground state (0, J ′), is given by a Boltzmann distribution:

nv J

n0J ′
=

gJ

gJ ′
exp

(

−
Ev J − E0J ′

kBT

)

. (57)

In Eq. (57), E denotes the energy of the level and g its statistical weight; T is

the kinetic temperature. Molecular hydrogen occurs in either the ortho (odd values

of J ) or the para (even values of J ) form, whose respective ground states are J ′ = 1

and J ′ = 0. Allowing for the nuclear spin degeneracies, the statistical weights of

the ortho levels are gJ = 3(2J +1) and of the para levels gJ = (2J +1). Integrating

along the line of sight and taking natural logarithms, Eq. (57) may be written in the

form

ln

(
Nv J

gJ

)

= ln

(
N0J ′

gJ ′

)

−
Ev J − E0J ′

kBT
, (58)

where N is a column density and T is assumed to be constant. Then, a plot of

ln (Nv J /gJ ) against (Ev J − E0J ′ )/kB has gradient −1/T .

In practice, thermodynamic equilibrium rarely, if ever, applies to H2 in the inter-

stellar medium. The more highly excited levels have larger radiative transition prob-

abilities and become underpopulated, relative to a Boltzmann distribution, whereas

the lower levels become overpopulated. In addition, the kinetic temperature, T ,

varies along the line of sight, in general. Consequently, the plot is not linear but

curved, as shown in Fig. 12. Nonetheless, the excitation diagram provides a conve-

nient means of comparison of the observed and calculated column densities of the

rovibrational levels. The local tangent to the curve provides a measure of the kinetic

temperature in the region of formation of the line, with the temperature increasing

(gradient becoming more positive) with increasing excitation energy of the emitting

level.

We recall that H2 has no permanent dipole moment. Its rovibrational transitions

arise from a quadrupole moment, and the associated radiative emission and absorp-

tion probabilities are small. Consequently, the rovibrational transitions of H2 are

optically thin, and the interpretation of its spectrum is not complicated by radiative

◭

Fig. 12 The H2 excitation diagram for a J-type shock wave in which us = 25 km s−1 and nH =
104 cm−3 in the preshock gas; B0 = 0. It was assumed in the calculations [17] that the reformation

of H2 in the cooling flow leads to, from top to bottom: (a) the rovibational levels being populated

in proportion to gJ exp(−Ev J /17316); (b) population of the J = 0 and J = 1 rotational levels

of the v = 6 manifold (1/4 in the para and 3/4 in the ortho level); (c) the levels are populated in

proportion to their local population densities. For the purposes of comparison, the broken curves

exclude the contribution of the process of reformation of H2 to the column densities (This figure is

presented in color in the electronic version of the book on springerlink.com.)
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transfer effects, which have to be taken into account when studying less abundant

but dipolar molecules.

Figure 12 illustrates also the effects of the reformation of H2, on grain surfaces,

in the cooling flow of the shock wave. The molecule is not produced, in general,

in its ortho or para ground state (J = 1 and J = 0, respectively), but in excited

rovibrational states, with what is still an unknown distribution of population. In the

top panel of Fig. 12, it is assumed that 1/3 of the binding energy of H2 (4.48 eV

or 51947K) is retained as internal excitation energy of the molecule, with the level

populations following a Boltzmann distribution at T = 51947/3 = 17316K; the

remainder of the binding energy is absorbed by the grain or transformed into trans-

lational kinetic energy of the molecule. The broken curves show the result obtained

neglecting the contribution of the reformation process to the level populations. It

may be seen that the different assumptions lead to distinguishable results and that

the reformation process makes a significant contribution to the populations of the

lower rovibrational levels.

Because of the differences in their dynamical structure, J- and C-type shock

waves present distinct signatures in the H2 excitation diagram. In Fig. 13 are shown

the predictions for a shock wave with the specified parameters at different evolu-

tionary times. When the shock wave is ‘young’, it retains J-type characteristics,

with relatively large column densities of levels with high excitation energy. As the

shock wave evolves, it acquires a magnetic precursor and ultimately evolves into

C-type, with much smaller column densities of high-excitation levels (and larger

column densities of the low-excitation levels). As may be seen from the figure, at

an intermediate age of t = 1500 year, when the shock structure is J-type with a

Fig. 13 The H2 excitation diagram for Cep A West, observed by Wright et al. [18], compared with

the predictions of shock model in which us = 25 km s−1 and nH = 104 cm−3, B0 = 100 µG in

the preshock gas. The predictions of the model are shown for different evolutionary times, t . For

t < 1000 year, the shock wave retains J-type characteristics, whereas, for t > 4000 year, it has

become C-type. At t = 1500 year, its structure is J-type with a magnetic precursor
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magnetic precursor, excellent agreement is obtained with the observations of the

outflow source Cepheus A West, made with the infrared space observatory (ISO)

satellite [18]. In this case, the lines observed are rotational transitions within the

v = 0 vibrational ground state. Such comparisons confirm that outflows are dynam-

ically young objects and even provide a means of estimating their evolutionary ages.

References

1. Field, G. B., et al.: Hydromagnetic shock waves and their infrared emission in H I regions.

Astrophys. J. 151, 953–975 (1968). 162, 173

2. Mullan, D. J.: The structure of transverse hydromagnetic shocks in regions of low ionization

Mon. Not. Roy. Astron. Soc. 153, 145–170 (1971). 162

3. Hollenbach, D. J., McKee, C. F. Molecule formation and infrared emission in fast interstellar

shocks I. Physical processes. Astrophys. J. Suppl. 41, 555–592 (1979). 162

4. Draine, B. T.: Interstellar shock waves with magnetic precursors, Astro-phys. J. 241,

1021–1038 (1980). 162

5. Smith, M. D., Mac Low, M.-M.: The formation of C-shocks: structure and signatures. Astron.

Astrophys. 326, 801–810 (1997). 162
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The Ionisation and Excitation State
of Stellar Outflows

A.C. Raga

Abstract This chapter describes how to include ‘microphysics’ (i.e. the relevant

physical and chemical processes) in dynamical models of stellar outflows. The gas

dynamic equations (including energy gains and losses) and the equations for a sys-

tem of atomic/ionic species are introduced. The calculation of the collisional rate

coefficients (recombination and ionisation) is described in detail, and a summary of

how to include photoionisation processes is also done. A quite detailed description

of how to compute the cooling function is presented. Finally, a summary is made of

how to compute the emitted spectrum.

1 Introduction

The course which covered the material in these lecture notes was meant as an intro-

duction on how to include ‘microphysics’ (i.e. the relevant physical and/or chemical

processes) in dynamical calculations of HH jets. At the more basic level, this has to

be done in order to have a more or less realistic calculation of the radiative cooling

term, which is fundamental for obtaining a correct description of the dynamics of

the gas. A more detailed description of the microphysics is necessary if one aims

at obtaining predictions (e.g. emission line maps and line profiles) that can be com-

pared directly with observations.

These notes cover the basics of how to introduce atomic microphysics in numer-

ical models of outflows, covering from the most simple possible approach to the

level of complexity necessary for obtaining predictions of the emission line spec-

trum. The introduction of chemical species is not directly discussed, but many of

the considerations and methods described in these notes can be applied with only

minor modifications to chemical networks.

Many of the publications resulting from the Jetset project cover topics related

to these notes. For example, the contribution of David Flower on the chemistry of

outflows ([5], in these Lecture Notes) is very closely related to the topics covered
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below. The Ph.D thesis of Ovidiu Tesileanu [20] has an extended description of the

treatment of ionisation and cooling appropriate for jet simulations. With respect to

the dynamics of HH jets, Raga [12] gives an elementary introduction to the subject.

Finally, the book of Aller [3] is a detailed guide on the calculation of the ionisation

and excitation state of atoms and ions in the ISM.

2 The Gas dynamic Equations

The 3D, Cartesian equations of gas dynamics can be written in the following way:

continuity equation →

∂ρ

∂t
+

∂

∂x j

(rhou j ) = 0 , (1)

momentum equation (three components) →

∂

∂t
(ρui ) +

∂

∂x j

(

ρui u j + Pδi j

)

= 0 , (2)

energy equation →

∂ E

∂t
+

∂

∂x j

[

u j (E + P)
]

= G − L , (3)

with E = ρu j u j/2 + P/(γ − 1) (γ is the specific heat ratio = 5/3 for our dis-

cussion of a non-relativistic, atomic/ionic gas). In these equations, the implicit Ein-

stein summation notation is used. We have used the standard notation: ρ = density,

ui = i th component of the flow velocity, xi = i th spatial coordinate, t = time and

P = pressure.

In an analogous way, one could write the MHD equations, which have extra terms

due to the Lorentz force, and also include the vector induction equation (which

describes the evolution of the magnetic field). The rest of the discussion in these

notes mostly applies also to the MHD equations.

In the energy equation, we have the terms G and L , which are the thermal energy

gain and loss (respectively) per unit volume and time. These two terms are the root

of all microphysical evil.

Both of these terms depend on the atomic/ionic structure of the gas. There is both

an energy gain and an energy loss associated with each of the species (for example,

HI, HII, HeI, HeII, HeIII, CI, CII, CIII, ...) present in the gas, so that we have to

compute them as

G =
∑

a

Ga ; L =
∑

a

La , (4)
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where a is an index that numbers all of the species included in the model. In order

to compute the Ga and La we need to know the value of the number densities na of

all of the species. These number densities follow continuity equations of the form

∂na

∂t
+

∂

∂x j

(nau j ) = Sa , (5)

where Sa is the source/sink term due to ionisations and recombinations (as well as

charge exchange for some species). By combining Eq. (5) with Eq. (1) one can find

the alternative set of equations

∂ya

∂t
+ u j

∂ya

∂x j

=
Sa

n
, (6)

where ya = na/n is the fractional abundance of the species a (with n = ρ/m, m

being the average mass per atom or ion).

Therefore, in order to solve the gas dynamic+microphysical problem one has to

integrate the five gas dynamic Eq. (1), (2) and (3) together with the set of equations

for the ionisation network (Eq. 5, or alternatively Eq. 6). The network equations are

coupled with the gas dynamic equations through the radiative energy gain and loss

terms (see Eq. 4).

3 The Ionisation State of the Gas

3.1 The Rate Equations

For the sake of simplicity, in this section we consider the case of a constant density

gas, for which the equations for an atomic/ionic network are

dna,z

dt
= Sc

a,z + Sph
a,z , (7)

with the collisional (Sc) and photoionisation (Sph) source terms being given by

Sc
a,z = ne

[

na,z−1ca,z−1 + na,z+1αa,z+1 − na,z

(

ca,z + αa,z

)]

, (8)

Sph
a,z = na,z−1φa,z−1 − na,zφa,z . (9)

The collisional source term (Sc) counts the contributions from the collisional

ionisation of the ions (of atoms a) of charge z − 1 (nena,z−1ca,z−1), the recombi-

nations of z + 1 ions (nena,z+1αa,z+1) and the collisional ionisation (nena,zca,z) and

recombination (nena,zαa,z) of z ions. The photoionisation source term (Sph) counts

the contributions from the photoionisation of z − 1 and z ions.
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If the na,z are known, the electron density can be computed as

ne =
∑

a

∑

z

z na,z . (10)

3.2 The Collisional Rate Coefficients

The collisional ionisation (c) and recombination (α) coefficients are functions of

temperature T given by integrals of the form

α(T ), c(T ) =
∫ ∞

0

f (v, T )σv v dv , (11)

where f (v, T ) is the Maxwell–Boltzmann distribution for the electrons and σv is the

velocity-dependent collision cross section for the appropriate process. The recombi-

nation rate takes into account two processes: radiative recombination (in which the

extra energy of the free electron is carried away by an emitted photon) and dielec-

tronic recombination (in which the extra energy of the free electron is distributed as

excitation energy of the inner electrons of a multi-electron ion).

It is common to give analytic fits to these coefficients in the ‘Arrhenius interpo-

lation’ form:

r (T ) = b1T b2 eb3/T . (12)

As an example of other formulae, Aldrovandi and Péquignot [1, 2] have used an

interpolation

r (T ) = b1

(
T

104

)−b2

+ b3T −3/2 exp (−b4/T )
[

1 + b5 exp (−b6/T )
]

, (13)

for recombination coefficients.

Then, the b1, b2, . . . coefficients are tabulated for all of the ionisation and recom-

bination processes that have to be considered. An example of such a tabulation

(taken from [14]) is given below.

Finally, we should note that for some atoms and ions, in the collision source term

Sc
a,z (see Eq. (8)) one also has to include ‘charge exchange’ reactions with H. These

are processes in which an atom or ion collides with HI or HII, and interchanges an

electron during the collision with the H atom or ion. Examples of important charge

exchange reactions are the processes HII + OI → HI + OII and HI + OII →
HII + OI (see Table 1). These processes have rates of the form nH I I nO I ξ (T ) and

nH I nO I I ξ
′(T ), respectively, with the rate coefficients ξ (T ) and ξ ′(T ) also given by

Arrhenius interpolations (see Table 1).
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Table 1 Ionisation, recombination and charge exchange coefficients

Reaction Coefficientsa

e + HI → 2e + HII 1: 5.83 × 10−11, 0.5, –157800

e + HII → HI 1: 3.69 × 10−10, –0.79, 0

e + HeI → 2e + HeII 1: 2.707 × 10−11, 0.5, –285400

e + HeII → HeI 2: 4.3 × 10−13, 0.672, 0.0019, 4.7 × 105, 0.3, 94000

e + HeII → 2e + HeIII 1: 5.711 × 10−12, 0.5, –631000

e + HeIII → HeII 1: 2.21 × 10−9, –0.79, 0

e + CII → 2e + CIII 1: 3.93 × 10−11, 0.5. –283000

e + CIII → CII 2: 3.2 × 10−12, 0.770, 0.038, 9.1 × 104, 2.0, 3.7 × 105

e + CIII → 2e + CIV 1: 2.04 × 10−11, 0.5, –555600

e + CIV → CIII 2: 2.3 × 10−12, 0.645, 7.03 × 10−3, 1.5 × 105, 0.5, 2.3 × 105

e + NI → 2e + NII 1: 6.18 × 10−11, 0.5 –168200

e + NII → NI 2: 1.5 × 10−12, 0.693, 0.0031, 2.9 × 105, 0.6, 1.7 × 105

e + NII → 2e + NIII 1: 4.21 × 10−11, 0.5, –343360

e + NIII → NII 2: 4.4 × 10−12, 0.675, 0.0075, 2.6 × 105, 0.7, 4.5 × 105

e + OI → 2e + OII 1: 1.054 × 10−10, 0.5, –157800

e + OII → OI 2: 2.0 × 10−12, 0.646, 0.0014, 1.7 × 105, 3.3, 5.8 × 104

e + OII → 2e + OIII 1: 3.53 × 10−11, 0.5, –407200

e + OIII → OII 2: 3.1 × 10−13, 0.678, 0.0014, 1.7 × 105, 2.5, 1.3 × 105

e + OIII → 2e + OIV 1: 1.656 × 10−11, 0.5, –636900

e + OIV → OIII 2: 5.1 × 10−12, 0.666, 0.0028, 1.8 × 105, 6.0, 91000

e + SII → 2e + SIII 1: 7.12 × 10−11, 0.5, –271440

e + SIII → SII 2: 1.8 × 10−12, 0.686, 0.0049, 1.2 × 105, 2.5, 88000

HI + NII → HII + NI 1: 1.1 × 10−12, 0, 0

HII + NI → HI + NII 1: 4.95 × 10−12, 0. –10440

HI + OII → HII + OI 1: 2.0 × 10−9, 0, 0

HII + OI → HI + OII 1: 1.778 × 10−9, 0, –220

aThe interpolation formulae are of the form 1: Arrhenius or 2: Aldrovandi and Péquignot [1], see

Eq. (12) and (13)

3.3 The Photoionisation Rates

The photoionisation rates are calculated as a function of the average intensity Jν of

the radiative field through the frequency integrals

φa,z =
∫ ∞

νa,z

4π Jν

hν
σa,z(ν) dν , (14)

where ν is the frequency, νa,z = χa,z/h is the frequency of the ionisation edge and

σa,z(ν) is the photoionisation cross section. Here again, one can find tabulations of

coefficients of power law interpolations for the σa,z(ν) (see, e.g. any of the versions

of the book of Osterbrock).

A more complex process for photoionisation of HI, important in regions of the

jets close to the outflow sources, also takes place. This ionisation occurs in two

stages: first an n = 1 → 2 excitation (from the ground state of H to the first excited

level, through the absorption of a Lyα photon or through a collision with a free

electron), then followed by a photoionisation of the n = 2 electron. This n = 2
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photoionisation requires photons of only 25% of the energy necessary to photoionise

electrons directly from the n = 1 level.

The problem of course is that one has to solve a system of radiative transfer

equations of the form

d Iν

dl
= jν − κν Iν (15)

for the specific intensity Iν ( jν and κν being the emission and absorption coefficients,

respectively). This is a system of equations, since one has to solve this for many

propagation directions (l being the distance element along a given direction) and

frequencies.

After integrating these radiative transfer equations, one can then carry out the

appropiate angular average:

Jν =
1

4π

∮

IνdΩ (16)

in order to obtain the average intensity of the radiative field.

Even though it is common practice to include photoionisation processes in 1D

shock models (a practice started by Raymond [18]), very little work has been done

in multi-dimensional simulations. There is the sole paper of Raga et al. [16] in which

the ‘diffuse’ ionising photon field (i.e. the ionising photons produced by the shocked

flow itself) was considered in a 3D jet model, and there are a few papers in which an

external ionising photon field was introduced (in order to model HH jets within HII

regions, see, e.g. Raga and Reipurth [13]). The more detailed descriptions of how

to introduce photoionisation in multi-dimensional simulations have been given by

Mellema et al. [8, 9].

However, for models of jets in neutral or molecular regions, the photoionisation

processes are only of secondary importance and are normally not included in the

models. Basically, it is normally assumed that CII and SII do not recombine to their

neutral states because of the presence of enough photons below the Lyman limit

within the region, and the problem of photoionisation is left at this. In these lecture

notes, the complex problem of photoionisation is abandoned here and now.

3.4 Coronal Ionisation Equilibrium

If the temperature is kept constant, the ionisation state of the gas evolves to the point

where Sa,z = 0 for all i and z. This condition (see Eq. (8)) gives a system of linear

equations which are equivalent to the system:

na,zca,z = na,z+1αa,z+1 . (17)
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This equation reflects the simple statement that in coronal ionisation equilibrium

the collisional ionisations from z → z + 1 are balanced by recombinations from

z + 1 → z.

Because c and α depend only on T , this system gives ionisation fractions ya,z =
na,z/na (where na =

∑

z na,z) which are exclusively a function of T . This result

holds if charge exchange reactions are included. The resulting ionisation fractions

yc
a,z(T ) are called the ‘coronal ionisation equilibrium’ ionisation state.

At high densities, the coronal ionisation equilibrium condition (Eq. (17)) has

to be modified by including the so-called ‘three-body recombination’ process (in

which one electron recombines with an ion, and a second electron carries away

the required energy difference). This process is the one that allows the system of

Eq. (17) to approach the Saha, thermodynamic equilibrium ionisation distribution.

However, densities above 109 cm−3 are necessary for three-body recombination to

become a relevant process.

Clearly, if we have an ionisation fraction ya,z > yc
a,z(T ), ya,z will evolve to a

lower value with time, and the reverse is true for ya,z < yc
a,z(T ).

As an example, let us consider the coronal ionisation equilibrium for H. Equation

(17) is

nHIc(T ) = nHIIα(T ) . (18)

We can combine this equation with nH = nHI + nHII to obtain

yHII =
nHII

nH

=
1

1 + α(T )/c(T )
, (19)

where the Arrhenius interpolations for the coefficients are α(T )=3.69×10−10T −0.79

and c(T ) = 5.83 × 10−11T 0.5 e−157800/T (see Eq. (12) and the first two lines of

Table 1). The hydrogen ionisation fraction yHII as a function of temperature T

obtained from Eq. (19) is shown in Fig. 1.

Life would be easy if the gas in shocked interstellar flows were in coronal ioni-

sation equilibrium, as one could then make a tabulation of ionisation fractions as a

function of temperature and use this to obtain a tabulation of the cooling function

as a function of density and temperature. However, the timescale for relaxation to

coronal equilibrium is comparable to the cooling timescale of the flow, and there-

fore in many regions the ionisation state of the gas is well away from the coronal

equilibrium state. Because of this, in order to obtain an accurate cooling function it

is indeed necessary to integrate continuity equations for all of the species relevant

for the cooling term (see Eq. (5)).
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Fig. 1 Coronal ionisation fraction of H as a function of temperature

4 The Cooling Function

4.1 Introduction

In this section, we describe in some detail how to include the more important contri-

butions to the cooling due to different processes. Actually, the cooling is dominated

by collisional ionisation of HI and by collisional excitation of emission lines. We

describe the radiative recombination and free–free losses only because it is very

simple to include them, though they do not make an important contribution to the

cooling function (at least for a gas with solar abundances) for temperatures lower

than ∼ 108K. For temperatures above ∼ 108K, the cooling function is actually

dominated by the free–free losses.

4.2 Recombination and Free–Free Cooling

When an electron passes by an ion and recombines, all of the kinetic energy of the

electron is lost from the thermal energy reservoir. Analogously, when an electron

looses kinetic energy in an inelastic collision (with the resulting emission of a pho-

ton), the thermal energy of the gas is reduced. The resulting energy losses are called

the ‘recombination’ and ‘free–free’ cooling rates, respectively.

The free–free energy loss (per unit time and volume) due to the interaction of H

ions and free electrons is given by

L ff(H I I ) = nenHIIβff(T ) , (20)
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where the interpolation formula

βff(z, T ) = 1.846 × 10−27z2T 1/2 (21)

can be used (see the book of Osterbrock). In this interpolation function, one has

to set a charge z = 1 for HII. One can use the same function (i.e. with z = 1)

for calculating the free–free losses due to HeII ions (this of course being only an

approximation because HeI is not a hydrogenic ion) and the function with z = 2 for

HeIII ions.

The radiative losses due to recombination of HII are given by

L rec(H I I ) = nenHIIβrec(T ) , (22)

where the interpolation formula

βrec(t) = 1.133 × 10−24t−1/2
(

−0.0713 + 0.5 ln t + 0.640t−1/3
)

, (23)

with t = 157890/T (see Seaton [19]). The contribution of the recombination of He

ions can be computed with the scaling

βrec(z, T ) = zβrec(1, T/z2) , (24)

with z = 1 for HeII and z = 2 for HeIII.

4.3 Collisional Ionisation

The energy loss due to collisional ionisation of the ion a, z can be written as

L ion
a,z = nena,zca,z(T ) χa,z , (25)

where ca,z(T ) is the collisional ionisation coefficient and χa,z the ionisation potential

of the ion a, z.

The terms that dominate the collisional ionisation cooling are the ionisation of

HI, HeI and HeII. These terms dominate the cooling function for a neutral gas that

is suddenly shocked to a temperature above a few times 104K.

4.4 Collisionally Excited Lines

For each atom or ion that contributes substantially to the cooling function, one

has to solve a system of equations giving the populations of the excited levels nl

(l = 1, 2, . . . ., N numbering in order of increasing energy all of the relevant levels)

of the ion a, z. Of course, we have the relation
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na,z =
N
∑

l=1

nl . (26)

Once we have computed the nl populations, we can compute the energy loss due

to the collisional excitation of all of the relevant levels of the ion a, z as

Lcol
a,z =

N
∑

l=1

nl

∑

m<l

Al,mhνl,m , (27)

where Al,m is the Einstein A coefficient for the spontaneous transition l → m and

hνl,m is the energy associated with this transition.

The non-trivial problem of finding the populations nl of the excited levels of

course still remains. Because the relaxation time for the excitation/de-excitation of

the levels is generally much shorter than the cooling and/or dynamical timescales

of the flow, the calculation of the nl is usually done under a statistical equilibrium

assumption. The equilibrium condition results in the set of equations:

∑

m>l

nm Am,l + ne

∑

m �=l

nmqm,l (T ) = nl

⎡

⎣

∑

m<l

Am,l + ne

∑

m �=l

ql,m(T )

⎤

⎦ , (28)

where we have introduced the qm,l (T ) which are the radiative excitation (m < l) or

de-excitation (m > l) coefficients. The left-hand side of this equation represents the

number of radiative (nm Am,l) and collisional (nenmqm,l ) transitions into state l per

unit volume and time. The right-hand side represents the radiative and collisional

transitions from level l into all of the other levels of the ion or atom.

For m > l, the qm,l (T ) coefficients are given by the expression

qm,l (T ) =
8.629 × 10−6

T 1/2

Ωml (T )

gm

, (29)

where gm is the statistical weight of the level at which the transition begins. The

collisional excitation coefficients (i.e. l → m with m > l) are given by the relation

ql,m(T ) =
gm

gl

e−hνm,l/kT qm,l(T ) . (30)

The function Ωml (T ) has a value of order 1 and is only slowly dependent on T .

In many calculations, these ‘collision strengths’ are considered to be constant and

taken from tabulations such as the classical one of Mendoza [10]. However, in our

modern electronic world there is the database of the Arcetri/Cambridge/NRL ‘CHI-

ANTI’ atomic database collaboration (http://www.arcetri.astro.it/science/chianti/

database/) which has temperature-dependent interpolations of the collision strengths

and the Einstein A coefficients of all of the transitions I have ever known.
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We now proceed as follows. We assume that the A and q coefficients are known,

as well as the temperature T (obtained, e.g. from a dynamical simulation) the elec-

tron density ne and the ionic number density na,z (both obtained from a solution

of the non-equilibrium ionisation rate equations). We can then invert the system of

linear Eq. (26) and (28) in order to find the populations nl (l = 1 → N ) of the

excited levels of the ion a, z.

Let us show how the equations look for a three-level atom (N = 3). Equation

(26) takes the form

n1 + n2 + n3 = na,z . (31)

Now, for l = 1, from Eq. (28) we obtain

n1 [−ne(q12 + q13)] + n2(A21 + neq21) + n3(A31 + neq31) = 0 , (32)

and for l = 2, we obtain

n1(neq12) + n2 [−A21 − ne(q23 + q21)] + n3(A32 + neq32) = 0 . (33)

For l = 3, we obtain an equation that is a linear combination of Eq. (32) and (33).

Now, the system of three linear Eq. (31), (32) and (33) can be inverted in order

to find n1, n2 and n3 as a function of na,z , ne and T .

4.5 The Two-Level Atom

Let us now consider a two-level atom (N = 2). Equation (26) takes the form

na,z = n1 + n2 , (34)

and Eq. (28) takes the form

n1neq12 = n2(neq21 + A21) . (35)

The left-hand side of this equation is the rate of transitions into level 2 (the only

possible route being collisional excitations up from level 1) and the right-hand side

represents the rate of transitions from 2 to 1 (with both collisional and radiative

transitions).

Equations (34) and (35) can be combined with Eq. (30) to obtain

n2 =
na,z

(g1/g2)eE21/kT + 1 + nc/ne

, (36)

where the critical density is defined as nc ≡ A21/q12. Then, for ne ≪ nc (the

‘low-density regime’), we have
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n2 =
na,zneq12

A21

, (37)

and for ne ≫ nc (the ‘high-density regime’), we have

n2 =
na,zg2e−E21/kT

g1 + g2e−E21/kT
, (38)

which is the Boltzmann distribution (LTE) population of level n2.

The critical density nc therefore represents the density at which the transition

between the low-and high-density regimes occurs. For atoms or ions with many

excited levels, it is possible to define critical densities for the different transitions,

which represent the densities around which the associated emission lines have the

low/high-density regime transition.

The energy loss associated with the transition between levels 2 and 1 is

L21 = n2 A21hν21 , (39)

which for the low-density regime then takes the form

L21 = na,zneq12hν21 , (40)

and for the high-density regime becomes

L21 = n2(LT E)A21hν21 , (41)

These equations illustrate the well-known fact that the collisionally excited line

cooling function depends quadratically on the density (namely, on the product

nena,z) for the ‘low-density regime’ and linearly for the ‘high-density regime’.

5 Recipes for Calculating the Cooling Function

5.1 Isochoric and Coronal Ionisation Cooling Functions

The most simple way to include a cooling function is to include in the energy

Eq. (3) either the coronal ionisation equilibrium or the isochoric cooling.

The coronal ionisation equilibrium cooling is calculated as a function of den-

sity and temperature from the ionisation fractions calculated from the equilibrium

Eq. (17). The cooling function is normally calculated for an atom+ion number den-

sity of 1 cm−3, and the ‘user’ scales it to higher (or lower) densities by assuming that

it is in the ‘low-density regime’ (in which the cooling is proportional to the square

of the density). As can be seen from tabulations of cooling functions for different

ions (see Raga et al. 1997), low-density regime cooling can be safely assumed up to

densities of ∼ 105 cm−3.
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The isochoric cooling function is usually computed by considering a parcel with

a time-independent density (of atoms+ions, usually of 1 cm−3) which cools from

a given initial temperature (typically 106K). The non-equilibrium ionisation rate

equations (7) are then integrated in time together with an energy equation of the

form

3

2

d

dt
(n + ne)kT = −L , (42)

where n and ne are the atom+ion and electron (respectively) number densities (n

being time-independent, but not ne). From the integration one obtains T and L as

a function of time, and then one plots the radiative energy loss as a function of

temperature in order to obtain the so-called isochoric cooling function.

The coronal equilibrium and isochoric cooling functions are tabulated in Table 2

(taken from De Colle [4]). These tables can be introduced in a code (with an appro-

priate interpolation in log T in order to obtain a continuous function) and multiplied

by the square of the number density of atoms+ions in order to obtain a cooling

function to be used in the energy equation.

As far as I am aware, there are no publications yet describing the differences

that are obtained in the dynamics of the flow when using one or the other of these

cooling functions. Also, there is no discussion in the literature of how different are

the resulting flow structures when one introduces a more accurate, many species

non-equilibrium treatment of the ionisation and cooling.

5.2 Tabulations and Interpolation Functions

A detailed description of how to introduce an ionisation network with enough

species so as to give a realistic cooling function is given by Raga et al. [17]. These

authors tabulate the cooling functions for a number of atoms and ions as a function

of temperature and number density, and one can carry out an appropriate interpola-

tion to obtain the numerical values of the cooling function for the desired densities

and temperatures.

A reduced description of the cooling is proposed by Raga et al. [14, 15], who

give a series of interpolation formulae which reproduce the low-density regime of

the ionic cooling functions of Raga et al. [17] For example, the interpolations of the

cooling due to the OI and OII ions are

log10

(
LOI

nenOI

)

= −45.0 + 1.23t1 + 0, 5t1
10 + 1.2t2 + 1.2 [max(t2, 0)],, (43)

log10

(
LOII

nenOI

)

= −47.3 + 7.9t3 + 1.9
t4

|t4|0.5
, (44)

with t1 = 1 − 100/T , t2 = 1 − 104/T , t3 = 1 − 2000/T , t4 = 1 − 5 × 104/T .
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Table 2 Coronal ionisation equilibrium and isochoric cooling functions1

log10 T [K] log10 Lce log10 L iso

[erg] [cm−3] [s−1]

3.9106 −26.0784 −25.5891

4.0006 −24.0161 −23.7582

4.0282 −23.5181 −22.8345

4.0601 −23.0615 −22.5186

4.0956 −22.6889 −22.3633

4.2008 −22.1165 −22.2669

4.4103 −22.0975 −22.2346

4.6313 −22.1336 −22.2015

4.7165 −22.0483 −22.1604

4.9465 −21.5183 −22.0718

5.1332 −21.2607 −21.7326

5.3338 −21.0870 −21.4906

5.4942 −21.0875 −21.2639

5.6010 −21.1587 −21.1075

5.7289 −21.2863 −21.0778

5.8089 −21.3616 −21.1810

5.9180 −21.4217 −21.3489

5.9809 −21.4289 −21.4227

1The coronal equilibrium and isochoric cooling functions are given for

an atom+ion number density of 1 cm−3

5.3 Cooling Function Including a Single Species

Ionisation Network

A possibility first suggested by Hartigan and Raymond [6] is to solve a single ioni-

sation rate equation for HII (or for HI) and assume that nOII/nO = nHII/nH (which

approximately holds due to the similarity of the ionisation potentials of OI and HI,

and the strong charge exchange reaction which couples O and H). Then, the cooling

function can be computed including the collisional ionisation of H (see Eq. (25))

and the cooling due to collisional excitation of OI and OII (Eq. (43) and (44)).

Such a cooling function is appropriate only for temperatures below ∼ 2 → 4 ×
104K (as in this temperature regime the cooling rate is indeed dominated by OI and

OII). Therefore, one has to incorporate a switch to either the coronal or the isochoric

cooling function for higher temperatures.

6 Calculation of the Emitted Spectrum

6.1 General Considerations

Once we have calculated a dynamical model of an outflow (using a cooling function

and an ionisation network such as the ones described above), we can proceed to

compute the emission from the model flow. Typically, one wants to compute the

emission in a set of lines which have been observed.
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6.2 The Emission Coefficient

If we know the number density n2 of the excited level which gives rise to a given

transition 2 → 1, the total line emission coefficient (integrated over all frequencies

within the line profile) can be computed as

j
(L)
21 =

n2 A21 hν21

4π
. (45)

The emission coefficient as a function of frequency ν is

j21(ν) =
j

(L)
21√

πΔνD

e−(ν−ν21)2/ΔνD
2

, (46)

where ΔνD = ν21vT/c with vT =
√

2kT/ma (ma being the mass of the element

which gives rise to the line). Using the standard Doppler effect, one can obtain the

emission coefficient as a function of radial velocity vr (along the line of sight):

j21(vr) =
j

(L)
21√
πvT

e−vr
2/vT

2

. (47)

Equation (47) can be derived from Eq. (46) by considering that vr/vT = (ν −
ν21)/ΔνD and that dν = (ΔνD/vT)dvr.

6.3 Optically Thin Lines

For an optically thin emission line, one can obtain an emission map by integrating

j (L)
21 (see Eq. (45)) along lines of sight:

I21(x, y) =
∫

j (L)
21(x, y, z) dz , (48)

where (x, y) are the plane-of-the-sky coordinates and z lies along the line of sight. In

order to compare the predicted emission map with an observed map, a convolution

with a simulated ‘seeing profile’ or ‘point spread function’ might be necessary.

Also, maps at a given radial velocity can be computed by integrating along lines

of sight the radial velocity profile (Eq. 47) of the line:

I21(vr, x, y) =
∫

j21(vr − v(f)
r, x, y, z) dz , (49)

where v(f)
r(x, y, z) is the component along the line of sight of the velocity of the

flow at position (x, y, z).
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From Eq. (49), one can compute line profiles at a given position (x, y) on the

plane of the sky. In order to compare with an observation, a convolution with the

spectral response function of the spectrograph might be necessary, as well as a

plane-of-the-sky spatial integration or convolution in order to simulate the effect

of the seeing and of the width (and/or length) of the spectrograph slit.

Also, one can carry out an integration of (49) over given radial velocity bins in

order to obtain ‘radial velocity channel maps’ that can be directly compared with

Fabry–Pérot or with 2D field spectroscopic observations (again, a convolution with

a ‘seeing function’ might be appropriate).

6.4 Optically Thick Lines

For an optically thick line, one has to first calculate the optical depth to the position

z along the line of sight:

τ21(vr, x, y, z) =
∫ z

−∞
κ21(vr − v(f)

r , x, y, z′)dz′ , (50)

where κ21 is the absorption coefficient:

κ21(vr, x, y, z) = n2(x, y, z)

(
g2

g1

)
c2 A21

8π3/2ν21
2vT

e(−vr/vT)2

, (51)

where c is the velocity of light, and vT is the spatially dependent thermal velocity

(see the text following Eq. (46)).

One should point out that for an optically thick line the population of the excited

level (n2 in Eq. (51)) will be affected by the absorption of the photons of the emis-

sion line. This effect produces a coupling between the radiative transfer and the

calculation of the level populations.

The emission line map at a given radial velocity vr can then be calculated as

I21(vr, x, y) =
∫

j21(vr − v(f)
r , x, y, z) exp [−τ21(vr, x, y, z)] dz . (52)

This is the kind of treatment necessary to calculate the P-Cygni profiles which

are obtained for stellar winds. The calculation of optically thick lines is of course a

problem which has been developed in detail in the field of stellar atmospheres [7].

Somewhat more simple is the inclusion of the effect of dust extinction, because in

this case the absorption coefficient has no radial velocity dependence (being approx-

imately constant across the width of an emission line).
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7 Summary

When one computes models of stellar outflows, one has to include a cooling func-

tion. This can be done in several different degrees of approximation:

• using a tabulated coronal ionisation equilibrium or isochoric cooling function

(Sect. 5.1),

• including one extra continuity equation for HI or for HII (Sect. 5.3), and

• including several atoms/ions (Sect. 5.2).

These three approaches give cooling functions which differ from each other by rel-

atively large factors, and the effect of using the more simplified cooling functions

should be evaluated quantitatively for the flow which one wants to simulate.

In order to obtain a prediction of the emitted spectrum, one has to have a pre-

diction of the ionisation state of the gas. This can again be done by taking the

coronal equilibrium or isochoric ionisation fractions (which would be consistent for

a model calculated with the corresponding cooling functions), or by using the non-

equilibrium ionisation state which is obtained from a full gas dynamic+ionisation

network simulation.

One then has to compute the populations of the excited levels giving rise to the

lines of interest and compute the corresponding emission coefficients (Sect. 6.2). In

this course we have given the details of how to compute the populations of levels

excited by collisions (Sect. 4.4), but we have not given a description of how to do

this calculation for levels populated by a recombination cascade (this can be found,

e.g. in the book of Osterbrock [11]). This latter case of course applies for the H

Balmer lines. With the emission line coefficients one can then carry out predictions

of intensity maps, line profiles and radial velocity channel maps (Sect. 6.3) which

can be compared directly with observations.
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Deriving Physical Diagnostics from Observations

C. Dougados, F. Bacciotti, S. Cabrit, and B. Nisini

Abstract We review in this course diagnostics for the physical conditions in the

atomic component of the flow (electronic densities ne, electronic temperatures Te

and hydrogen ionization fraction xe) based on the most prominent optical and

near-infrared forbidden emission lines. We discuss both diagnostics independent

of the excitation process and methods based on the comparison with radiative shock

models. We then detail the different techniques used to derive jet mass-loss rates,

an important parameter for launching models, and their associated uncertainties.

Finally, we describe important biases introduced by projection and convolution

effects which can critically affect the translation of observed quantities into mean-

ingful physical quantities of the flow.

1 Introduction

The purpose of this course is to review the main methods and associated biases used

to derive gas physical quantities from emission line observations in the context of

protostellar jet studies. We will concentrate here on jet physical parameters critical

to constrain launching models.

We will specifically focus on diagnostics for the atomic component of the

flow based on the most prominent optical and near-infrared forbidden emission

lines. These optically thin and spatially resolved tracers allow to derive model-

independent physical parameters for the inner regions of the jets. Other important

jet tracers not treated here include near-and mid-infrared H2 lines (see [33] and D.
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Flower this book), permitted emission lines such as the ones from atomic hydrogen

which require rediative transfer modelling, mid-and far-infrared emission lines such

as [O I]λ63 µm (also treated in [33]), radio millimetric and centimetric emissions

(see [11]) and X-ray emission (see [35]).

This chapter is organized as follows. We first discuss model-independent diag-

nostics for plasma excitation conditions (electronic densities ne, electronic temper-

atures Te and hydrogen ionization fraction xe) based on the analysis of the strong

optical emission lines of O0, S+, N+ and the infrared emission lines of Fe+. The

derivation of these jet quantities is critical to constrain mass-loss rates, an impor-

tant parameter for launching models, and identify the main heating and ionization

sources. The second section describes an alternative method to derive hydrogen

ionization fractions and jet densities by comparison of the radiative properties of

shock models with observed line emission. Indeed, shocks are likely the main heat-

ing and ionization mechanisms in young jets. We discuss in the third section the

different methods used to derive mass-loss rates for atomic jets and their associated

uncertainties. Finally, we describe in the last section important biases introduced by

projection and convolution effects, which affect the translation of observed quanti-

ties into physically meaningful ones.

2 Model-Independent Diagnostics of Plasma

Excitation Conditions

We describe in this section methods for deriving plasma conditions (electronic den-

sity ne, electronic temperature Te and hydrogen ionization fraction xe) without any a

priori assumptions on the nature of the heating and ionization mechanisms (shocks,

ambipolar diffusion, turbulent mixing layers, etc.). The main hypothesis underlying

the different diagnostics discussed below are the following:

• The lines are collisionally excited, i.e. photo-excitation and photoionization pro-

cesses are neglected. This assumption may not be valid in the very inner regions

of the wind (see below for a more detailed discussion of photoionization pro-

cesses),

• Only collisions with electrons are considered since they are an order of magnitude

more efficient than with H atoms in partially ionized atomic plasma,

• The emission is assumed optically thin (no radiative transfer effects),

• Excitation conditions are assumed homogeneous within an elementary emissivity

volume element (the smallest spatial resolution element of current observations

is on the order of 0.1′′ = 14 AU at d = 140 pc, the distance of the Taurus SFR),

• The level population of atoms is given by statistical equilibrium: for the studied

optical and near-IR transitions the timescales to establish statistical equilibrium

are 104–107 s (for ne in the range 102–105 cm−3). This is smaller than the typical

dynamical timescale for the flow to cross the elementary resolution element

(tdyn > 7×106 s for flow velocities <300 km sv−1 in a 0.1′′pixel at d = 140 pc).
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• S and Fe atoms are assumed fully singly ionized, while N and O are in ionization

equilibrium with H. We will see below that this is achieved in the low-excitation

conditions typically observed in young stellar jets.

2.1 Forbidden Line Emission: Emissivity and Critical Density

We first recall some fundamental concepts and definitions regarding forbidden emis-

sion lines (for a more detailed description see [24, 33]). In the case of the multi-level

atom, the emissivity of an optically thin, collisionally excited, emission line result-

ing from the transition between levels j (upper) and i (lower) of the atom X in the

ionization state X k is given by

ǫ j i = n j A j i hν j i = nH(
nX

nH

)(
nX k

nX

)(
n j

nX k

)A j i hν j i

= f (nH, [X/H ], [X k/X ], ne, Te),

where A j i is the Einstein coefficient for spontaneous radiative de-excitation, n j the

number volume density of atoms X k in the level j and hνi j = E j − Ei with Ei the

excitation energy of level i . The line emissivity therefore depends on the elemental

abundance ([X/H ] = nX

nH
), the ionization state of element X ([X k/X ] = nXk

nX
) and

the excitation state of element X k (
n j

nXk
), where n stands for the number volume

density.

The excitation state is derived from the assumption of statistical equilibrium and

collisionally dominated excitation with electrons. Taking into account a multi-level

atom, the statistical equilibrium for level j reads as

n j

⎛

⎝

∑

i �= j

neq j i +
∑

i< j

A j i

⎞

⎠ =
∑

i �= j

neni qi j +
∑

i> j

Ai j ni , (1)

where the sums are performed over all contributing levels i .

For a Maxwellian distribution of velocities, the collisional de-excitation coeffi-

cient q j i is given by

q j i =
8.63 × 10−6Ω j i (Te)

g j T
1/2

e

cm3 s−1 (2)

with Ω j i (=Ωi j ) the collision strength of the transition and g j the statistical weight

of level j . Collision strengths are dimensionless and typically of order unity. The

relationship between the excitation and de-excitation collisional coefficients is given

by the detailed balance equation
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qi j

q j i

=
g j

gi

e−(E j −Ei )/kT (3)

with Ei the excitation energy of level i .

The critical (electronic) density of level j is defined by

ncr( j) =
∑

i< j A j i
∑

i �= j q j i

. (4)

Note that the critical density depends on the electronic temperature (via the col-

lisional coefficients). The critical density defines two regimes for the emissivity of

the j − i line.

• For electronic densities much larger than the critical density of the upper level j

(ne >> ncr, high-density regime), collisional processes dominate over radiative

processes on the left-hand side of Eq. (1) and the population number density of

level j approaches its local thermodynamic equilibrium (LTE) value:

n j

n
≃

g j e
−E j /kT

∑

gi e−Ei /kT
, (5)

where n =
∑

ni is the total number density of element X k and Ei is the excitation

energy of level i . In this limit, the level population does not depend on ne and

the line emissivity ǫ j i increases linearly with the total density nH (ǫ j i ∝ n j ∝
nH f (Te)).

• For electronic densities much lower than the critical density (ne << ncr, low-

density regime), collisional processes from level j are negligible and the popula-

tion number density of level j can be approximated as

n j

n
≃

ne

A j i

∑

i≥ j

q0i , (6)

where q0i is the collisional excitation coefficient to state i from the ground state.

Now ǫ j i ∝ nenH f (Te) ∝ xen2
H f (Te), and the line emissivity increases as the

square of the total density.

Critical densities for the main optical and near-IR forbidden emission lines inves-

tigated in jet studies are given in Table 1. These lines will probe emitting regions

with ne in the range 103–106 cm−3.

2.2 Electronic Density Diagnostics

Electronic density diagnostics are obtained from line ratios involving transitions

from the same element, in the same ionization state and originating from upper
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Table 1 Critical densities

Line ncr (Te = 104K)

[Fe II]1.644, 1.257 µm 5.6 × 104 cm−3

[Fe II]1.533 µm 4.6 × 104 cm−3

[O I]λ6300 Å 1.8 × 106 cm−3

[S II]λ6731 Å 3.5 × 103 cm−3

[N II]λ6583 Å 1.2 × 105 cm−3

levels of similar excitation energies to minimize the effect of electronic temperatures

but different critical densities.

An example of such a density-sensitive line ratio is the [S II]λ 6716 Å/[S II]λ

6731 Å ratio. These two lines involve transitions between the 2 D3/2 and 2 D5/2

terms and the ground level (see Fig. 1). If we denote by 1 the ground level of both

transitions and by 2 and 3 the upper levels of the [S II]λ 6716 Å and [S II]λ 6731

Å transitions, respectively, the ratio of these two lines is given by

ǫ31

ǫ21

=
A31

A21

×
hν31

hν21

×
n3

n2

, (7)

with n2 and n3 the population number densities of levels 2 D3/2 and 2 D5/2, respec-

tively. Levels 2 and 3 having similar excitation energies, the derived ratio will

depend mostly on ne and little on Te.

Figure 3 shows the computed variation of the [S II] ratio as a function of ne,

taking into account the first five levels of the S+ atom with excitation temperatures

less than 2 × 104K.

Another very useful density diagnostic is the ratio involving the strong near-

infrared lines of [Fe II]1.533 and 1.644 µm (Fig. 2). For excitation temperatures less

than 2×104K, Fig. 4 shows that a simplified model involving the first 16 levels of the

Fe+ atom gives a very good approximation of the level population distribution. This

ratio provides a good diagnostic for ne in the range 103–105 cm−3.

[S II] and near-IR [Fe II] line ratios trace electron densities up to 104 and

105 cm−3, respectively. Higher densities can be probed by additional ratios of lines
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Fig. 1 Energy diagrams of the main optical forbidden emission lines. Adapted from [28]
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Fig. 2 Energy diagrams of the main [Fe II] emission lines. Adapted from [37]

falling in the optical regime. In particular, the ratio between the two red lines

[FeII]λ7155Å and 8617Å is sensitive to electron densities in the range ne ∼
105–107 cm−3, as shown in [10, 22]. This ratio has been recently employed on sev-

eral T Tauri and Class I to evidence densities larger than 106 cm−3 at the base of

their jets [22, 32, 39]. Another interesting tracer of high-density gas is represented

by the ratio between the permitted CaIIλ8542Å and the forbidden [CaII]λ7291Å

transitions. Although fluorescence may be in general important in the population

of the levels giving rise to these transitions, in HH objects the dominant excitation

mechanism appears to be through collisions [22, 32]. In such a case, their ratio is

sensitive to electron densities larger than 106 cm−3 (see Fig. 5).

2.3 Temperature Diagnostics

Electron temperatures can be measured through the ratio of lines of the same ele-

ment with different excitation energies. In the optical, sensitive ratios are those
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Fig. 3 Variation of the [S II]λ6716Å/[S II]λ6731Å line ratio as a function of ne. The different

curves correspond to Te varying between 7 × 103 and 2 × 104K. Adapted from [28]

Fig. 4 Variation of the [Fe II]λ1.533 µm/[Fe II]λ1.644 µm line ratio as a function of ne. The

different curves correspond to Te values of 3,000, 104 and 2 × 104K. Adapted from [37]
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Fig. 5 Plot of the high-density tracer ratio CaIIλ8542Å/[CaII]λ7291Å, calculated assuming colli-

sional excitation. The solid lines indicate the range of values observed in the HH 1 jet ([32])

between nebular transitions (those connecting the 1 D2 with the 3 P terms) and auro-

ral transitions (connecting the 1S0 and 1 D2 terms) in elements having a 2 p or 4 p con-

figuration (cf. [24]). Examples of these ratios are [OI]λ(6300+6363)Å/[OI]λ5577Å

or [NII]λ(6548+6583)Å/[NII]λ5755Å (see Fig. 6). These ratios can in principle

probe a large range of temperatures, between 5000 and 20,000K. However, the

nebular lines are much stronger than auroral lines in jet conditions, thus their ratio

can be very large (in the range 100 – 1000) and difficult to be observed.

Fig. 6 Left: intensity ratio of optical [N II] transitions as a function of temperature and for two

values of electron density, computed adopting the approximated analytical solution given in [36].

Right: diagnostic diagrams for ne and Te determination based on different [FeII] lines. On the

right, a diagram constructed combining the near-IR density-sensitive ratio 1.64 µm/1.53 µm and

the temperature-sensitive ratio between the 1.64 µm and the optical 8620 Å line. The symbols

indicate the line ratios observed in the HH 1 jet knots (from [32]).
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Also in the rich spectrum of Fe+ there are several potential transitions that can be

used as temperature tracers. To this aim it is, for example, possible to combine one

of the near-IR transitions from the 4 D term (Tex ∼ 11 000K), with one of the tran-

sitions from the 4 P term, excited at ∼ 19 000K. These latter transitions, however,

either fall in regions of poor atmospheric transmission (those connecting the 4 P–4 D

terms) or fall in the optical range (the 4 P–4 F transitions). An important temperature

tracer is, for example, given by the ratio [Fe II]1.644 µm/[FeII]8620Å that probes

temperatures ranging from ∼4000 to ∼ 15 000K (e.g. [37, 32]), which use requires

to combine lines observed with different instrumentation.

Through multi-wavelength observations of lines of the same element it is pos-

sible to combine ratios sensible to density variations with ratios sensible to tem-

perature variations, constructing diagnostic diagrams from which one can simul-

taneously derive the two physical parameters. An example of such a kind of dia-

grams is given in Fig. 6, constructed with the IR and optical [FeII] diagnostic

lines.

2.4 Deriving the Ionization Fraction from Optical Line Ratios:

The BE99 Technique

As explained above, there are several possibilities to derive in a relatively simple

way the electron density in stellar jets. The knowledge of ne, however, is not suf-

ficient to determine the dynamical properties of the flow, because the bulk of the

moving material might be only partially ionized or even predominantly neutral. To

effectively compare observations and theoretical models one actually needs to know

the total hydrogen density nH. The total density cannot be retrieved directly form the

observations, but it can be derived from the electron density if one has an estimate

of the hydrogen ionization fraction xe = ne/nH. To find xe observationally, how-

ever, is not trivial. In this paragraph we examine the difficulties connected with the

determination of the ionization fraction in jets, and we describe an original method,

the so-called BE technique, that allows one to overcome these problems and derive

xe from commonly observed emission lines.

In many astrophysical situations the ionization fraction is computed via the so-

called ‘coronal equilibrium’ [36], in which the collisional ionization of hydrogen

is balanced by recombination at a given temperature. In jets, however, one cannot

apply this method, because at the derived electron densities the hydrogen recombi-

nation time is about the same as the total transit time of a gas particle along the bright

jet beam (trec ∼ 1/neα(H, T ) ∼ 103 year, where α(H, T ) ∼ 3 × 10−13 cm3 s−1

for Te ∼ 104K). Therefore, once it is created, the hydrogen ionization decouples

from the thermal conditions of the gas, ‘freezing’ at its initial value no matter the

temperature variations of the gas, and it is subsequently carried along the jet beam

in a process of slow recombination (see [4]).

It follows that the hydrogen ionization has to be computed in another way. A

method applied by several authors in the past has been the comparison with grids of
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shock models that simulate the line intensities [42, 19, 20] (see the next section). In

this way the hydrogen ionization fraction was indirectly inferred by the best fit to

the line fluxes. This method, however, is extremely complex and implies a number

of assumptions on the physical mechanism that produces the gas heating (i.e., a

shock of given velocity and geometry, with a given pre-shock density and pre-shock

magnetic field, etc.) which is something that one would rather avoid when trying to

establish the nature of the observed emission.

A simple and powerful technique to derive xe and Te from the ratio of optical

lines of S+, O0 and N+ observed in jets was first presented is [4] and subsequently

refined in [5]. The method, referred to as the ‘BE’ technique in the jet community,

was built upon the recognition of the fact that charge exchange between O and N

with H is the dominant mechanism in the ionization balance of these species. This

process, in fact, is favoured by the circumstance that the ionization potential of N

and O is very close to that of hydrogen (Eion = 13.6 eV for H, 13.61 for O and 14.54

for N). In addition, even if the hydrogen ionization fraction is not in equilibrium with

the local temperature, it can be considered at any time in equilibrium with the N and

O ionization fractions, because the processes that regulate the ionization balance of

N and O are much faster that those that regulate the ionization balance of hydrogen.

Thus, xe could be derived indirectly from the ionization of O and N, which in turn

could be inferred from the observed forbidden lines from these species.

The method just assumes that the gas is collisionally excited, making no hypothe-

sis regarding the heating agent. This is clearly an advantage if the results are used to

validate a given thermal model. The range of applicability of the technique, however,

is limited to the case of low-excitation conditions, which applies in the beam section

of stellar jets. In this case, all sulphur can be assumed to be singly ionized and

nitrogen and oxygen not more than once ionized. These assumptions are confirmed

by the fact that S++, N++ and O++ lines are never detected in the spectra of HH jets

(with the exception, sometimes, of strong bow-shocks at the head of the jet).

The ratios used in the technique are [O I]λ6300λλ(6300 + 6363)Å/ N IIλλ

(6548 + 6583)Å and [S II]λ6731λλ(6716 + 6731)Å/ [O I]λ6300λλ(6300 + 6363)Å.

These depend not only on the electron density and temperature, but also on the

ionization fractions and the abundances of the involved species.

As mentioned above, due to its low ionization potential, sulphur can be assumed

to be all singly ionized in the jet beams. Thus, to compute N+/N0 and O+/O0 one

can consider only the processes of collisional ionization, the simple and dielectronic

recombination and charge exchange with hydrogen. The latter mechanism, in par-

ticular, provides a mean to connect the observed ratios with the hydrogen ionization

fraction. In fact, the relationship between xe and N+/N0, O+/O0 is given by the

following equations:

O+

O0
=

xe(C(O, T ) + δO(T ))

xe(α(O, T ) − δ′
O(T )) + δ′

O(T ))
, (8)
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N+

N0
=

xe(C(N, T ) + δN(T ))

xe(α(N, T ) − δ′
N(T )) + δ′

N(T ))
, (9)

where C(O,T ), C(N,T ) are the collisional ionization rates for oxygen and nitro-

gen, α(O, T ), α(N, T ) are the direct plus dielectronic recombination rates, δO(T ),

δN(T ) and δ′
O(T ), δ′

N(T ) are the direct and inverse charge exchange ionization rates,

respectively.

Thus, assuming a given abundance set (see below for a discussion of this point),

the considered line ratios, written for simplicity as R1 = [S II]λ6731Å/[O I]λ6300Å

and R2 =[O I]λ6300Å/[N II]λ6583Å, can be calculated numerically by solving the

ionization balance Eqs. (8), (9) and the system of equations for the population of the

levels in statistical equilibrium.

The ratios are functions of the electron density, ne, temperature, Te, and hydrogen

ionization fraction, xe. Once ne is determined from the sulphur doublet, both R1 and

R2 are functions of xe and Te only. It follows that in the (xe, Te) parameter space

the values of R1 and R2 are found on two surfaces, and the observed values of the

ratios will define a curve on each surface. The intersection between the two curves

Fig. 7 Example of an application of the BE technique from [5]: the diagnostic diagram for the

position at 12.5′′ along the HH 34 jet beam. Each stripe defines the loci of the (xe, Te) values for

which the predicted line ratio equals the observed one ± a 1σ rms error. The intersection of the

crossing stripes provides Te = 7550 ± 250K and xe = 0.044 ± 0.007
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projected onto the (xe, Te) plane will then indicate the values that these physical

quantities must have to produce the observed line ratios. If the errors of the measured

ratios are included, the curves will widen into two ‘stripes’ in the (xe, Te) plane,

providing also an estimate of the error that affects xe and Te.

This concept is illustrated graphically in Fig. 7, taken from [5]. Here the crossing

of the ‘stripes’ indicate the values of xe and Te (with the derived errors) for one

position in the HH 34 jet.

It can be noticed that while R1 depends on both Te and xe, R2 is essentially

only sensitive to xe variations. The BE technique is thus an optimal tool to inves-

tigate the ionization of the flow while giving also an estimate of the gas tempera-

ture. In practice, however, the calculation of the physical quantities from the line

ratios is calculated with an automated inversion code that allows one to investigate

big data sets in a limited time. In this code, the level populations are determined

with a five-level model for the atoms, using transition probabilities and coeffi-

cients for electron collisions from [30], while the ionization fractions for O and

N are found using collisional ionization and radiative recombination rates from

[27], dielectronic recombination rates from [27, 34] and charge exchange rates

from [26, 2].

The method has been applied successfully to the study of the emission along the

beams of several HH jets, unresolved across their width. A typical diagnostic result

of this type is illustrated in Fig. 8 for the HH 111 jet. The application of the method

has shown that jets are only partially ionized, with average xe values between 0.01

and 0.6. The variation of ne and xe along the flow is consistent with ionization

freezing close to the source, followed by slow non-equilibrium recombination. The

mechanism that produces a high ionization at the base of the jet, however, is not

known, although it deems to have similar efficiencies in all cases: Lower ionization

fractions are found in the densest jets, i.e. those that recombine faster. In any event,

the realization that stellar jets are only partially ionized has provided new, accurate

estimates of the total density nH = ne/xe. These estimates are much larger than

previously thought and typically, on large scales, range from 103 to 105 cm−3. The

total density estimate, in turn, allows one to derive the jet mass, energy and momen-

tum fluxes that are critical parameters to understand the relationship between the

jet and its environment, the jet launching mechanism and the properties of the flow

propagation.

Finally, it is worth mentioning that being the procedure fast and easy to apply

(with respect, for example, to a grid of shock models), it turns out to be well

suited for the analysis of the large data sets provided by high angular resolution

observations. Application of the technique to spectra of jets taken with the hubble

space telescope can be found, for example, in [6, 8, 31]. In particular, running the

diagnostic code on input 3D datacubes taken at high spatial and spectral resolution

with the space telescope imaging spectrograph (STIS) it is possible to investigate

the physical conditions of interesting regions of the flows in separated velocity

intervals, as illustrated in Fig. 9 for the first 200 AU of the jet from the T Tauri

star DG Tau.
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Fig. 8 Physical conditions along the HH 111 jets diagnosed with the BE technique, taken from

[39]. From top to bottom: intensity profiles of the optical lines, the electronic density, ne, in units

of 103 cm−3, the ionization fraction, xe, the temperature, Te, in units of 104K and the total density,

nH, in units of 104 cm−3. The open circles are the values derived from the [Fe II]lines, while the

filled circles are parameters inferred from the optical S+, N+ and O0 lines using the BE technique.

The zero point of the spatial scale is the driving source HH 111 IRS
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Fig. 9 Electron density and ionization fraction derived with the BE diagnostics for the first

200 AU of the jet from DG Tau in four different velocity channels. The input high angu-

lar resolution data were obtained from HST/STIS multi-slit optical spectra. The low, medium,

high and very high velocity intervals are approximately, for DG Tau, from [+60, –70 km s−1]

(LV), [−70, –195 km s−1] (MV), [−195, –320 km s−1] (HV), and [−320, –450 km s−1] (VHV),

respectively [41].
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2.5 Main Uncertainties and Limitations

The sensibility of the BE diagnostic results on the adopted parameters (e.g. abun-

dances, atomic parameters) and on the observational uncertainties (extinction, crit-

ical densities, etc.) has been analysed in BE99, [6, 28]. These studies show that in

average signal-to-noise conditions the accuracy is generally very good for the esti-

mates of ne(≤3%), far from the [S II]λ6731critical density (∼ 2 × 104 cm−3), while

for Te and xe the accuracy is about 15–20% and 20–30%, respectively. Lavalley-

Fouquet [28], using independent routines, also investigates the reliability of the

predictions of the BE technique as the conditions of applicability progressively

fail to hold. In the following paragraphs we discuss in some detail the influence of

photoionization, excitation by shocks, choice of the abundance set and reddening.

2.5.1 Uncertainties Introduced by Neglecting Photoionization

One important limitation of the technique is that photoionization is not included in

computing the ionization fraction of N and O. This simplification was suggested by

the fact that in the case of HH jets, the central source, which is a low-mass young

star, produces only mildly energetic photons that are not capable to ionize N and

O. Bacciotti and Eistöffel [5] and other authors, e.g. [28, 23] checked carefully the

validity of this approximation and showed that it is justified as long as xe is lower

than 0.8. Ionizing photons, however, can be produced in the strong bow-shocks at

the ‘head’ of the jet, where the flow impacts the interstellar medium. The typical

mean free path of ionizing photons in the jet gas, however, is ∼ 1016 cm, i.e. one

order of magnitude smaller than the typical distance of the bow-shocks from the jet

beam where the diagnostic technique is usually applied. Nevertheless, the inclusion

of photoionization should be regarded among the first priorities among the future

developments of the diagnostics, together with the treatment of higher ionization

states of the considered elements. This will allow one to analyze the physical con-

ditions in the highly excited terminal bow-shocks, as well as to examine objects

of different nature, as peculiar regions of planetary nebulae or the ‘irradiated jets’

recently discovered in the Orion nebula.

2.5.2 Uncertainties Introduced by Shock Structure

The derivation of jet physical parameters from line ratios assumes that the observed

region of the jet is filled with gas at a single excitation condition. However, this is

usually not true as one is observing the cooling zone behind a shock front, having

strong spatial gradients in density, ionization and temperature. This zone is only

few AU in length, for shock velocities between 35 and 70 km s−1 and a pre-shock

density of 103 cm−3 [20], and thus it is generally not resolved by the observations.

As a consequence, biases in the parameters derived from integrated line ratios may

be introduced in a diagnostic that use lines emitted in regions at different excitation.

Figure 10 plots the emission profiles (normalized to their peak value) in the

cooling region of a 70 km s−1 shock, of a number of optical and IR diagnostic

lines. The profiles of xe, Te and ne used to compute the intensity profiles are taken
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Fig. 10 Relative intensity profiles of several optical and infrared lines as a function of distance

from the shock front for a 70 km s−1 shock (from [32]). These profiles have been calculated taking

the temperature, density and ionization fraction profiles from Fig. 1 of [20]. Figure adapted from [5]

from the shock model of [20]. This figure illustrates that the optical [SII], [NII]

and [OI] transitions used in the BE analysis all originate from similar regions and

probe intermediate temperatures and ionization fractions, thus biases introduced by

spatial gradients are minimized in this technique. The limit of applicability of the

BE analysis has been addressed by [28], who shows that this technique reproduces

the correct average physical conditions in shocks having velocities <50 km s−1 and

a pre-shock density <104 cm−3.

Nisini [32] also shows that IR [Fe II] lines, such as the 1.644 µm transition,

are emitted from a zone broader than the optical lines, that covers most of the

post-shocked cooling region. As a consequence, from a diagnostic based on [Fe

II] lines one usually derives electron densities and temperatures higher and lower,

respectively, with respect to the values derived from the BE technique [32, 39].

This is particularly true for high-density shocks, where the [SII] density diag-
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nostic lines used in the BE technique reach their high-density limit becoming

saturated.

The stratification of temperature and densities present in the entire cooling zone

can be traced using a larger sample of lines, that map different excitation conditions,

as it is shown in Fig. 8.

2.5.3 Uncertainties Introduced by Elemental Abundance

To estimate the ionization fraction, xe, and the temperature, Te, with the BE tech-

nique one has to assume the relative abundances of S, O, N used in the diagnostic.

As a consequence, the derived values may depend on the adopted set of abundances,

an issue that has to be investigated in more detail. Originally the diagnostic analysis

was done adopting solar abundances from [18]. A large number of HH jets, however,

are located, for example, in the Orion star forming cloud. Moreover, there are many

lines of evidence that suggest solar system abundances may not even be representa-

tive of the local ISM 4.6 Gyr ago, at the time the Sun formed. It follows that solar

abundances may not be adequate to study the properties of the jets tout-court. To

elucidate the influence of the choice of abundances, several cases have been tested

recently [39] by repeating the diagnostics for different sets of abundances adopted

by various authors [19, 5, 16, 3] and cross-checking with the expected values of

other theoretical line ratios. The results indicate that the differences in the diagnosed

values of the physical quantities adopting different abundance sets can amount to

30–40% and that the most reliable values are obtained, not surprisingly, adopting

the most recently determined abundance set for the interstellar medium (ISM) in the

cloud to which the examined object belongs.

2.5.4 Uncertainties Introduced by Reddening

In general, when working with line ratios one should first deredden the spectra and

thus eliminate the effect of wavelength-dependent absorption of dust located along

the line of sight to the observed object. The amount of dust in the intervening ISM is,

however, generally unknown and may even vary from knot to knot in a single jet. It is

thus quite difficult to correct the data for dust extinction in jets, although one expects

dust being substantial in a star formation cloud. The lines used in the BE technique

are quite close in wavelength. This on one hand makes it impossible to determine

the extinction from these lines themselves. On the other hand, one can expect that

the proximity in wavelength makes the reddening contribution small on the line

ratios. The possible effect on the determination of the physical quantities of not

taking reddening into account was estimated quantitatively by [5], who found that,

for example, an extinction of Aν = 3, quite typical for a T Tauri Star, was producing

a variation in the estimated xe and Te of at most 10 and 15%, respectively, which

is in any case smaller than the error due to the measurement of the fluxes in good

signal-to-noise conditions. The reddening uncertainty is of course completely elim-

inated if one has a mean to determine the extinction, either from the literature or by

direct determination using jet emission lines far apart in wavelength. The latter case

has been investigated recently with a combined optical-NIR approach (see below).
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2.6 Generalizations of the BE Diagnostics

Finally, it is worth mentioning two important generalizations of the BE method that

have been developed recently.

First, in two recent papers [32, 39] it is illustrated how the scientific outcome

of the BE diagnostic method can be greatly increased if it is combined with

intercalibrated NIR spectral analysis. First of all, lines far apart in wavelength

can be used to determine the extinction in any spatial resolution element of the

spectra, thus correcting it exactly for the dust differential absorption. Then, for

example, one can employ ratios between lines from the same species well sep-

arated in wavelength to provide more stringent constraints on excitation condi-

tions. This is the case, for example, for the [Fe II]8617Å/1.64 µm and the [S II]λ

6716,6731Å/1.03 µm ratios, which are very sensitive to the gas electron tempera-

ture. Also, as mentioned above, such an approach gives the possibility of probing

spatially non-resolved different components of the jet cooling layers using ratios

of various lines of different critical density. In an optical/NIR global spectrum,

NIR lines from H2, can be used to compare the properties of the molecular and

atomic components of the jet, giving insights on the relative importance of mass

flux in the two and on the prevalence of slow C-shocks with respect to J-shocks

at the borders of the flow. In addition, a wide wavelength coverage gives one the

possibility of observing lines of less abundant species, that, nevertheless, contain

important diagnostic information. In particular, lines from many refractory species

(Ca, Ni, Cr in addition to Fe and C) can be used to derive the amount of gas deple-

tion in the jet, thus setting constraints to the degree of dust grain destruction by

shocks [39].

The second important generalization of the BE technique has appeared in [23],

where diagnostics of HST slitless spectra of the HH 30 jet at high angular resolution

has been attempted. Here the authors have tested the validity of the basic principles

of the method, but also have developed a new diagnostic code that uses all the lines

available in the optical range (i.e. O I, O II, N I, N II, S II lines) in a procedure

that minimizes the differences between observed and calculated ratios on a large

grid of values of the density, temperature and ionization fraction. The net result is

to extend the range of validity of the technique to regions characterized by electron

densities larger than the [S II]λ6731critical density and by high temperatures. This,

for example, makes it possible to investigate the physics of the dense and excited

regions close to the star, thus providing a mean to directly test the validity of the

models proposed for the jet acceleration.

3 Deriving Excitation Conditions from Shock Diagnostics

An alternative approach for deriving excitation conditions in jets is the compari-

son of observed line emission properties (intensities, line ratios) with shock mod-

els predictions. It is beyond the scope of this chapter to review the arguments in
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favour of shocks as the main line excitation mechanism in jets from young stars.

Line emission in jets appears highly structured with small-scale knots separated by

a few 100 AU on scales ≤ 104 AU and larger structures (so-called Herbig–Haro

objects) separated by a few 0.1 pc on scales up to a few parcsecs. Two main ori-

gins for the observed structure of jets are considered: instabilities versus internal

shocks due to time variable ejection. As we will see below these latter models have

proven successful at reproducing the kinematical and excitation properties of knots

in young stellar jets. However, it is fair to say that the debate is still going on,

especially regarding the small-scale knots. We show below that the comparison of

line emission characterictics with predictions from the radiative properties of shock

models allows to constrain shock velocities and hydrogen ionization fractions in the

post-shock cooling zone. This method therefore provides an alternate way to derive

jet densities and mass-loss rates.

3.1 J-Type Shock Radiative Models

We will concentrate here on the analysis of atomic line emission in jets from

comparison with the radiative properties of the post-shock cooling regions of J-

type (hydrodynamic) shocks. If the shock velocity is low enough (typically less

than 30 km s−1) and the transverse magnetic field strength large enough, the dis-

continuity will be smoothed and a C-type shock may develope. Time-dependent

MHD emission, especially H2, are detailed in the chapter by David

Flower.

Radiative properties of (steady-state) shock models depend on essentially three

parameters: the shock velocity, the pre-shock gas density and the pre-shock mag-

netic field (note that only the component of the magnetic field parallel to the shock

surface influences the shock structure). To illustrate the method presented here we

will use the 1D radiative J-type shock models developed by [20, 21]. These models

are computed for shock velocities Vshock ranging from 15 to 100 km s−1, pre-shock

atomic hydrogen densities npre-shock ranging from 102 to 106 cm−3 and pre-shock

magnetic fields B0 = 0.1–3000 μG, which correspond to the expected conditions

in jets on scales of a few 100 AUs. The ionization state of the gas entering the

shock affects the amount of lyman continuum emitted by the shock. Hence a pre-

ionization equilibrium is computed through an iterative procedure ensuring that the

H pre-ionized fraction agrees with the ionization fraction at the end of the sim-

ulation. The flow is allowed to cool for t = 200 years behind the shock, which

ensures to fully resolve the cooling zone for most of the studied initial conditions

(the exception being at the lowest shock velocities and lowest pre-shock densities).

Fully 2D bow-shock models have been also developed by different authors (see

for, e.g. [19, 43]).These may be more representative of reality, however, a detailed

comparison with observations requires a good knowledge of the shock geometry.

Planar shock models should apply to any portion of the jet characterized by a single

effective shock velocity regardless of the true (certainly complex) geometry of the

shock.
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3.2 Diagnostics for xe and Vshock from Line Ratios

Hartigan et al. [20] present a method to derive ionization fractions and shock veloci-

ties from comparison of observed line ratios involving the strongest optical emission

lines with predictions from radiative planar J-type shocks. Figure 11 illustrates the

Fig. 11 Line flux radiated per unit surface of the shock front for the most prominent optical emis-

sion lines as a function of pre-shock density for two different shock velocities: Vshock = 30 and

80 km s−1. Shock models are taken from [20, 21]. Figure adapted from [28]
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variation of the most prominent optical lines fluxes as a function of pre-shock den-

sity and shock velocity. Under the assumption of optically thin emission, line fluxes

produced in the cooling region of a shock front can be approximated as

F21 ∝ ǫ21dcool = ǫ21Vshocktcool, (10)

where ǫ21 is the line emissivity corresponding to the transition from level 2 to

level 1 (cf §2.1) and dcool the longitudinal size of the post-shock cooling region.

The cooling time behind the shock front is roughly given by the total thermal

energy divided by the cooling rate, i.e. tcool ≃ (3/2nHkT )/(n2
post−shockΛ(T )) where

Λ(T ) is the cooling function. npost−shock, the H density in the post-shock cooling

gaz, is given by npost−shock = Cnpre−shock, C being the shock compression factor.

Hence,

F21 ∝ ǫ21Vshock(3/2npost−shockkT )/(n2
post−shockΛ(T ))

F21 ∝
ǫ21

Cnpre−shock

Vshock f (T ).

Line fluxes from the shock increase linearly with the pre-shock density in the

low-density regime (when ne<< ncr) and become almost insensitive to npre−shock

at high electronic densities (corresponding to large npre−shock or large Vshock). The

combination of lines with different critical densities will be strongly dependent on

npre−shock, while the combination of lines with similar critical densities will be more

sensitive to Vshock.

In particular the ratio [N II]λ6583Å/ [O I]λ6300Å appears as a good diagnostic

of the intensity weighted ionization fraction in the post-shock cooling zone. This

ratio is insensitive to pre-shock densities (the two lines having similar critical den-

sities) and pre-shock magnetic field. The post-shock ionization fraction increases

with shock velocity and decreases with increasing pre-shock density.

From comparison of five independent optical line ratios with predictions from

their planar J-type shock models, Hartigan et al. [20] derive accurate estimates

of post-shock ionization fractions and shock velocities in three HH jets (HH 34,

HH 47 and HH 111). From knowledge of the post-shock electronic densities

(derived from the [S II]λ6716/λ6731Å ratio, for example) and using the compres-

sion factor given by the required shock model, one can further derive both post

and pre-shock total gaz densities. Hartigan et al. [20] argue that the best estimate

of the average jet total H density in presence of ejection variability is given by

nH = √
npre−shocknpost−shock = C−1/2npost−shock. The low derived ionization fractions

(in the range 1–5%) lead the authors to significantly increase previous estimates of

the jet average density hence the mass-loss rates in these flows, bringing them in

better agreement with mass-loss rates derived from line luminosities and suggest-

ing that the atomic component of these jets is powerful enough to drive associated

molecular outflows.
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3.3 Line Diagnostic Diagrams

Another interesting tool proposed by [29] relies on line ratio diagrams involving the

strong optical forbidden emission lines of [O I]λ6300, [N II]λ6583, [S II]λ6731

and [S II]λ6716. We plot in Fig. 12 the locus occupied by J-type planar shock

Fig. 12 Optical line ratio diagrams predicted by the planar J-type shock models of [20, 21]. Left

panels: B0 = 100 µG and npre−shock from 102 to 106 cm−3. The curves connect models with the same

pre-shock density. Shock speeds increase with [N II]λ6583/ [O I]λ6300 along each curve from 15

to 100 km s−1for npre−shock ≤ 104 cm−3, from 30 to 80 km s−1for npre−shock = 105, 106 cm−3. Right

panels: The variation of the curves with a pre-shock magnetic field from 0.1 to 300 µG is shown

for pre-shock densities npre−shock = 103, 104 cm−3. Figure taken from [28]
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models in the [N II]λ6583/ [O I]λ6300 versus [S II]λ6731/ [O I]λ6300 and in the

[S II]λ6716/λ6731 versus [S II]λ6731/ [O I]λ6300 diagrams.

All shock models are found to follow a well-defined sequence in the

[S II]λ6716/λ6731 versus [S II]λ6731/ [O I]λ6300 diagram, not affected by the

magnetic field. The post-shock forbidden line emitting regions have all a simi-

lar excitation temperature and hence a similar [S II]λ6731/ [O I]λ6300 ratio. The

[S II]λ6716/λ6731 decreases as the post-shock electronic densities increase, i.e. as

the shock velocity and/or pre-shock densities increase. When post-shock electronic

densities become larger than the critical density of [S II]λ6731, the [S II]λ6731/

[O I]λ6300 ratio decreases and the [S II]λ6716/λ6731 reaches its high-density

limit. On the other hand, in the [N II]λ6583/ [O I]λ6300 versus [S II]λ6731/

[O I]λ6300 curves for differing pre-shock densities npre−shock are clearly separated

for npre−shock ≥ 103 cm−3. This again results from the fact that post-shock electronic

densities reach the critical densities of the [S II] lines. The [N II]λ6583/ [O I]λ6300

ratio, sensitive to post-shock ionization fraction, combined with the [S II]λ6731/

[O I]λ6300 ratio, sensitive to post-shock electronic densities, provides a tool to

constrain the shock parameters.

These two diagrams therefore allow (1) to clearly identify shocks as the excita-

tion mechanism if line ratios follow the shock sequence in the [S II]λ6716/λ6731

versus [S II]λ6731/ [O I]λ6300 diagram and (2) to derive estimates of npost−shock and

Vshock in the inner regions of T Tauri microjets from the location of their line ratios

in the [N II]λ6583/ [O I]λ6300 versus [S II]λ6731/ [O I]λ6300 diagram, provided

an assumption is made on the strength of the magnetic field.

This tool has been applied to the DG Tau and RW Aur microjets ([29, 15]).

Optical forbidden line ratios in these two jets closely follow the shock sequence

at all distances along the jet and at all flow velocities except the lowest ones

in DG Tau. All other investigated heating mechanisms (turbulent mixing layers,

ambipolar diffusion) fail to reproduce the observed optical line ratios in these jets.

In DG Tau, inferred shock speeds increase with flow velocity, ranging from 50 to

100 km s−1and pre-shock densities decrease along the jet from 105 cm−3close to the

star to 103 cm−3at 1.5′′.

3.4 Constraining Pre-shock Magnetic Fields

Even a moderate component of the magnetic field parallel to the shock front in the

pre-shock gas lowers the compression of post-shock material and changes the shock

excitation conditions and radiative properties. In principle estimates of the magnetic

field parallel to the shock front can be derived from the comparison of observed line

emission with predictions of magnetized shock models. However, Hartigan et al.

[20] demonstrate that the optical line ratios of shocks with magnetic field closely

resemble the ones of shocks with lower shock velocities and no B (see Fig. 12). The

Hβ line flux could help discriminate between a magnetized and non-magnetized

case but this requires knowledge of the total area of the shocks contributing to the

observed line emission.



236 C. Dougados et al.

The presence of magnetic fields in jets can be indirectly inferred from their

observed excitation properties assuming this is due to shocks. From a detailed

HST/STIS study of the HH30 jet, Hartigan et al. [23] find high-ionization knots

forming at around 100 AU in the flow and propagating outwards. These knots

are not accompanied by corresponding increase in the density, suggesting that the

compression is lowered by strong internal magnetic pressure which also lengthens

recombination times.

4 Derivation of Mass-Loss Rates

Mass-loss rates, Ṁjet, are critical jet parameters to derive. First, the mass ejection

to accretion rates ratio is a constraining parameter for MHD launching models. The

flux of angular momentum (Ṁjet×rvφ) carried by the jet may play an important role

in the regulation of stellar rotation. Last, the jet thrust or flux of linear momentum

(ṀjetVjet) is important to establish whether atomic jets are powerful enough to drive

molecular outflows and to evaluate the amount of turbulence injected in the inter-

stellar medium. We concentrate here on methods deriving Ṁjet from direct atomic

jet observations. The assumptions and limitations of each method are presented in

detail. This section is adapted from [11].

A second approach for estimating wind dynamics uses its interaction with ambi-

ent material, manifested in the form of slow molecular outflows and shock-excited

emission lines from the wind/cloud interface. Unlike direct jet observations, these

estimates are integrated over all solid angles and independent of the wind excita-

tion conditions or chemical composition. This second class of methods will not be

discussed here and is described in detail in [11].

4.1 Methods Based on the Jet Density and Cross Section

These methods, which are free of extinction corrections, determine the mass-loss

rate Ṁjet from estimates of the mean jet density njet, velocity Vjet and radius rjet

(when spatially resolved):

Ṁjet = 10−8
( njet

104 cm−3

) ( rjet

50 AU

)2
(

Vjet

200 km s−1

)

M⊙year−1. (11)

Two different assumptions can be used to derive the mean jet density njet from

the measured density nH = ne/xe, estimated from emission lines as discussed in the

previous sections.

(A.1) Physical conditions are uniform within the observing pixel: Then, no com-

pression correction is necessary and njet = nH ([5]). This method is probably an

upper limit to the actual mass-loss rate: If the beam contains a mixture of high
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and low density regions, nH will probably be dominated by the high density, high

emissivity ones.

(A.2) Emission comes from a shock wave: Then, njet can be taken as the pre-

shock density, i.e. njet = nH× C−1 where C is the compression factor in the shocked

layer where the lines are emitted, estimated from comparison of observed line

ratios with shock models [20]. Actually, Hartigan et al. [20] recommend to use

(npost−shocknpre−shock)1/2 as a better estimate of njet and thus apply
√

C−1 rather than

C−1 as compression correction: 1D hydrodynamical simulations suggest that it gives

a better estimate of the average jet mass flux in the presence of velocity variability;

ejected material tends to accumulate in the shocks, diminishing the mass-flux in

the freely flowing segments between shocks. For shock speeds of 30 km s−1, com-

pression factors are on the order of 15–20 and correction factors of ≃ 4 should be

applied to the measured jet density.

4.2 Methods Based on the Jet Luminosity

Luminosity-based methods have the advantage of being independent of the jet diam-

eter (provided that it is smaller than the beam of observations), but at the cost of an

uncertainty in the extinction correction. The two methods are presented in detail in

Appendix A of [21].

(B.1) Physical conditions are uniform within the observing pixel: The mass-loss

rate is simply given by

Ṁjet = μ′2mH NHV⊥/ l⊥, (12)

where μ′ is the mean particle weight per H nucleus and is related to μ (the mean

atomic weight) by μ′ = μN tot/NH (μ′= 1.35 for atomic gas of solar abondance),

NH is the total number of hydrogen atoms within the aperture, derived from the

(optically thin) forbidden line luminosity (NH = nH × V ), and V⊥ and l⊥ are the

projected jet velocity and length in the plane of the sky. For the [S II]λ6731Å line

one finds, assuming all sulfur is singly ionized (Eq. A10 of [21]):

Ṁjet = 3 × 10−8

(

1 +
nc(6731)

ne

)(
L(6731)

10−4 L⊙

)

(
V⊥

150 km s−1

)(
l⊥

2 × 1015 cm

)−1

M⊙year−1,

(13)

where nc(6731) = 1.3×104 cm−3 is the critical density for collisional de-excitation.

Similarly, for the [O I]λ6300 Å line, nc(6300) = 2 × 106 cm−3 at a representative

temperature of 8200K, and
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Ṁjet = 2 × 10−10

(

1 +
nc(6300)

ne

)(
L(6300)

10−4 L⊙

)(
1

1 − xe

)

(
V⊥

150 km s−1

)(
l⊥

2 × 1015 cm

)−1

M⊙year−1.

(14)

The above expression is derived from Eq. A8 of [21], with an additional cor-

rection factor for oxygen ionization (assuming that, through charge exchange,

O+/O = H+/H). Similar expressions can be derived for mass-loss rates estimated

from the fluxes of the near-infrared [Fe II] emission lines ([32]). In that case, how-

ever, one must take into account the possible strong Fe depletion in the gas phase

due to the presence of dust in the flow (see the chapter by Brunella Nisini in Elba

school proceedings).

(B.2) Emission traces cooling in a shock wave: Hollenbach et al. [25] find a

quasi-proportionality between the [O I]63 µm line luminosity and the mass-flux

through a shock, Ṁshock. The same roughly applies to the [O I]λ6300 line ([21]).

This behaviour is understood with the following simple argument: Let us assume

that the [O I]λ6300 line represents a fixed fraction 1/ f of the shock cooling in

the temperature range T2–T1. Then, if N (T2, T1) denotes the number of atoms of

post-shock gas in this same range,

f L(line) = Lcool ≃
3

2
k(T2 − T1) ×

N (T2, T1)

tcool(T2, T1)
≃

3

2
k(T2 − T1)

Ṁshock

µmH

. (15)

A proportionality between L(line) and Ṁshock is thus predicted as long as f does

not vary greatly with shock conditions (which is justified at pre-shock densities ≥
105 cm−3). To derive Ṁjet from Ṁshock, an assumption must be made about the shock

geometry. For a moving shock intercepting the whole jet beam, and perpendicular

to the jet flow, Ṁjet = (Vjet/Vshock) Ṁshock. Quantitatively, Hartigan et al. [21] find

Ṁjet = 5 × 10−7

(
L(6300)

10−4 L⊙

)(
cos θ

Nshock

)
(

Vjet/300 km s−1

Vshock/40 km s−1

)

M⊙year−1 (16)

The above expression is derived from Eq. (A17) of [21], with an additional cor-

rection factor cos θ/Nshock, where Nshock is the number of shocks within the beam,

and μ is the angle of the shock from the perpendicular to the jet flow. In the partic-

ular case of a stationary oblique shock, Vshock= cos θVjet and Ṁjet= Ṁshock.

4.3 Comparison of the four Methods: Class I Jets

and the DG Tau Microjet

Since the above four methods all use the same tracer: forbidden lines, it is instructive

to compare the resulting Ṁjet, as an indicator of uncertainties. Table 2 presents such
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Table 2 Comparison of four mass-loss rate derivations from optical lines in Class I jets

Cross section [O I] luminosity

ne Vjet/Vshock Uniform Shock Uniform Shock

Jet (cm−3) xe(B E) <xe>
√

C (km s−1) (A.1) (A.2) (B.1) (B.2)

HH 34 650 0.027 0.016 4.0 220/28 4.0 10−7 1.7 10−7 1.5 10−7 4.5 10−6

HH 47 250 0.070 0.036 4.9 350/34 9.8 10−7 3.9 10−7 4.2 10−7 4.6 10−5

HH 111 900 0.064 0.027 4.7 320/32 3.6 10−7 1.8 10−7 5.8 10−7 2.9 10−5

a comparison for the three bright Class I jets: HH 34, HH 47 and HH 111. The table

lists planar shock model parameters <xe>,
√

C and Vshock determined from five

different line ratios by Hartigan et al. [20] and their published values of Ṁjet using

methods (A.2) and (B.1). In addition, the table also lists Ṁjet for method (A.1), using

the values of xe(BE) derived by [5] with their procedure, and Ṁjet for method (B.2),

assuming cos μ/Nshock = 1.

As xe and ne actually vary along the jet (e.g. [5]) and with radial velocity inside

the line profile (e.g. [29]) it is also instructive to perform a comparison as a function

of distance and flow speed . This is done in Fig. 13 for the microjet from the Class

II source DG Tau, using 80 AU pixels ([29]).

Among the two methods assuming uniform emission, the cross section-based

estimate (A.1) is always higher than that expected from the observed [O I]λ6300

luminosity (B.1), for both Class I jets and the DG Tau microjet. It suggests that the

local nH is higher than the average density in the jet volume. A filling factor <1 is

similarly derived by [5] for the HH 30 jet. Hence (A.1) tends to give an upper limit

to the mass-loss rate.

Among the two methods assuming shocks, (B.2) derived from the total luminos-

ity is generally higher than (A.2). The difference amounts to 10–100 in Class I jets,

where line luminosity was integrated over a section of 103–104 AU along the jet

(2’-20” at 500 pc; [20]). It would suggest that Nshock/ cos μ ≃ 1 per 100 AU of jet

length. The difference is less severe in DG Tau, a factor of 1–4 typically; the smaller

pixel of 80 AU includes less shocks. Overall, (B.2) does not appear reliable unless

small pixels ≤ 100 AU are used.

The most reliable methods thus appear to be (A.2) and (B.1). Interestingly, they

give very similar results within a factor 3 in Class I jets, as well as in the DG Tau

microjet beyond 100 AU of the source. Closer to DG Tau, however, the two methods

become discrepant, with Ṁjet(A.2) increasing by almost a factor 10 while Ṁjet(B.1)

decreases. The latter could be due to extinction, and the former to an overestimated

jet radius (close to the resolution limit). Extinction correction of (B.1) using the

stellar Av (3.5 mag towards DG Tau, [21]) will give the correct value if the increase

in Ṁjet(A.2) is real, and an upper limit otherwise, if the larger scale value is more

representative.

In addition, it should be kept in mind that, whatever the method, the observable

mass-loss rate could be either an upper limit (if part of the ‘jet’ is tracing entrained

ambient material) or a lower limit (if some ejected material is too cool and/or too

diffuse to emit).
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Fig. 13 Mass-loss rate in the DG Tau microjet as a function of distance for two different velocity

ranges: Top panel: high-velocity [–400,–250] km s−1, bottom panel: intermediate velocity [–250,

–100] km s−1. Curve styles refer to the four different methods: Using the jet cross section, and

assuming uniform emission (A.1, dash-dot) or a shock (A.2, solid line); [O I]λ6300 luminosity,

assuming uniform emission (B.1, grey line) or a single shock (B.2, dashed, with μ/Nshock = 1).

Adapted from [28].

5 Projection and Convolution Effects

We discuss in this section some of the prominent observational biases introduced

by line of sight projection and instrumental convolution effects. Indeed, observables

correspond at best to a 2D spatial projection onto the plane of the sky of an under-

lying 3D structure. In addition, the instrumental configuration introduces a transfer

function, which affects both the spatial and spectral domains and further modifies

the brightness distribution. Taking into account these two effects can be critical to

derive physically meaningful parameters from observations.
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5.1 Deriving Inclination Angles

We will first start with a cautionary remark about deriving jet inclination angles.

This parameter is critical to take into account projection effects but notoriously

difficult to constrain. The first possibility is a priori knowledge of the inclination

angle of the rotation axis of the central star-disc system. For all sources with known

close to edge-on geometry, jets are observed to emerge perpendicular to the plane of

the circumstellar disc. On larger scales, however, changes of jet directions may be

observed. For stars where rotation periods are determined, through periodic photo-

metric variations, rotation axis inclination angles can be derived from the broaden-

ing of photospheric lines which is proportional to Veq sin(i), where Veq is the equa-

torial stellar rotation velocity. Unfortunately, most active T Tauri stars driving jets

show irregular photometric variations, preventing accurate determination of rotation

periods. The circumstellar disc rotation axis can only be accurately determined from

fitting simultaneously fully resolved images and spectral energy distributions.

An alternative way is to derive jet inclination angles from proper motion mea-

surements. In principle, tg(i) = V⊥/V// where i = inclination angle of the jet axis

to the line of sight, V// and V⊥, respectively, the line of sight and tangential veloc-

ities measured at the same position in the jet. However, the brightness distribution

in jets is dominated by knots of emission, most likely due to shocks arising from

variable ejection at the source. Eisloeffel and Mundt [17] have shown that internal

knots travel at a fraction of the space velocity of jet material (between 40 and 100

%). Thus jet inclination angle can be safely derived with this method only for the

knot located at the apex of the terminal shock where jet material meets interstellar

medium at rest. Unfortunately, terminal shocks are not always clearly identified ...

5.2 Flow Line of Sight Velocities

Jet flow velocities are usually derived from peak or centroid line of sight veloci-

ties of emission line profiles. Knowing a priori either the jet inclination angle or

associated proper motions, true space velocity vectors can be reconstructed. This

method will give an accurate description of the poloidal velocity field provided that

no strong velocity gradients occur within one spatial or spectral resolution element.

This is generally the case for studies of jets on large distances from their driving

source (> a few 1000 AU). For studies of jets in their collimation and acceleration

regions, however, this approximation may fail. Indeed, close to the source the flow

is strongly stratified, both in velocities and in excitation conditions ([7]). The line

of sight velocities where the maximum of line emission occurs will be a complex

convolution of the true underlying velocity field with the excitation conditions of

the flow surfaces controlling the line emissivity (Te, ne, xe), with projection effects

onto the plane of the sky and with observational parameters (spectral and spatial

resolutions). An accurate comparison with model predictions requires to take into

account all of these effects. To illustrate this effect we show in Fig. 14 the predicted

position–velocity diagram obtained for a self-similar disc wind solution with mag-
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Fig. 14 Synthetic position–velocity diagram along the jet computed for a self-similar disc wind

solution with λ = 50, inner and outer launching radii rin = 0.1 AU and rout = 1 AU, and Ṁacc =
10−6 M⊙ year−1. The observational parameters are: i = 45◦, spatial resolution 22 AU and spectral

resolution 30 km s−1. Adapted from [37]

netic lever arm λ = 50, inner and outer launching radii 0.1 and 1 AU, respectively.

True terminal poloidal velocities range from 680 km s−1 for the inner streamline

to 170 km s−1 for the outer one. The predicted terminal peak line of sight velocity

is ≃ 520 km s−1, which corresponds to the true flow velocity of an intermediate

streamline and depends on both the excitation conditions and the resolution param-

eters.

5.3 Rotation Velocities

One of the most exciting findings in recent years has been the detection of an

asymmetry in the radial velocity across the jet section, that might be interpreted

as rotation of YSO jets around their symmetry axes. Indications for rotation have

been obtained in the first 100–200 AU of the jet channel through high angular res-

olution observations, both from space and the ground at wavelengths ranging from

the near-infrared to the near-UV [9, 13, 14, 45, 12].

The principle of measurement of jet rotation is to search for differences in the

Doppler shift of the lines emitted by the flow at equal distances from the symmetry

axis, and in particular at the opposite borders of the jet. The rotation of the jet, in

fact, will cause the two borders of the flow to move towards the observer at slightly

different velocities with respect to the material seen towards the symmetry axis.

To detect rotation one has to use instruments working at subarcsecond resolution,

to separate spatially the information coming from the two sides of the jets, and at

moderate/high spectral resolution, to identify expected velocity differences of the

order of 5–15 km s−1. The radial velocity (i.e. towards the observer) of a given line

can be measured by fitting a Gaussian to its profile and subtracting with respect to

the system velocity of the star. Rotation will then be searched by comparing the
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velocities of two measured profiles. In the case of rotation studies, however, one can

directly measure the difference of the radial velocity of the line profiles of interest

by applying cross-correlation routines that measure the displacement of two line

profiles independently of their particular shape. Note that using the above techniques

of data analysis one can improve upon the nominal spectral resolution by more than

ten times. For example, the velocity resolution of HST/STIS in the optical is 55 km

s−1, but applying gaussian fitting and cross-correlation routines to the line profiles

it is possible to detect shifts in spatially resolved locations down to about 5 km s−1

at high signal over noise. Indeed, the standard deviation of the centroid estimate for

a gaussian distribution of rms standard deviation σline and peak signal-to-noise SNR

is given by σcent = σline

SNR
[40]. Uncertainties in velocity shifts derived from gaussian

fitting procedure are thus typically: σV =
√

2FWHM/2.35

SNR
where FWHM is the spectral

FWHM of the profile and SNR the signal over noise ratio at the line peak.

As illustrated in Fig. 15, one can use both a ‘parallel’ and a ‘perpendicular’ con-

figuration of the slit(s) with respect to the flow axis. The ‘parallel’ configuration

allows one to directly measure the velocity of the line peak in different spectra

and thus map the differential velocity in a larger region of the flow. This method,

however, has the disadvantage of requiring a careful subtraction of spurious effects

caused by uneven slit illumination that could mimick rotation signatures [9, 45].

The ‘perpendicular’ configuration allows one to get the spectrum of the entire jet

section in one go, and spurious illumination effects are minimized. The analysis

of the line profile, however, is more difficult, as one needs to search for a ‘tilt’ in

the brightness distribution with respect to space and wavelength directions, caused

by the fact that the borders of the flow move towards the observer at slightly dif-

ferent velocities. Such a tilt, represented by the oblique line in the bottom panel

of Fig. 15, is not always easily detectable, and its measurement requires veloc-

ity analysis of each pixel row in the spectrum [13]. In both cases, to connect the

observed velocity shift to actual measurements of flow rotation, one has to consider

the (sometimes unknown) inclination of the flow with respect to the plane of the sky

and the influence of projection effects through the flow itself, as it will be discussed

below.

Rotation signatures have been seen in all the T Tauri jets observed with HST/STIS

(DG Tau, RW Aur, CW Tau, Th 28 and HH 30) in different emission lines and

using slit orientations both parallel and perpendicular to the outflow axis. At optical

wavelengths, systematic shifts in radial velocity, typically 5–25 ± 5 km s−1, were

found at jet positions displaced symmetrically with respect to the outflow axis, at

50–60 AU from the source and 20–30 AU from the axis (see Fig. 15). Very recently,

velocity asymmetries compatible with jet rotation have also been detected in the near

ultra-violet (NUV) lines of Mg+ λλ 2796, 2803 in the jets from Th 28 and DG Tau

[14] and in the H2 2.12 µm lines using ISAAC on the VLT in two small-scale jets,

HH 26 and HH 72, driven by Class I sources [12]. The detection of rotation is inter-

esting per se, as it supports the idea that jets are centrifugally launched presumably

through the action of a magnetic ‘lever-arm’. An important quantity derived from the

observed rotation signatures, assuming steady magneto-hydrodynamic ejection, is



244 C. Dougados et al.

Fig. 15 (continued)
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the ‘footpoint radius’, i.e. the location in the accretion disc from where the observed

portion of the jet is launched [1]. The observations would be consistent with foot-

point radii between 0.5 and 5 AU from the star, i.e. originating from the inner disc

regions. Another interesting quantity derived from the observed rotation signatures

is the amount of angular momentum carried by the jet. In the two systems for which

sufficient information is available (namely, DG Tau and RW Aur), this amounts to

between 60 and 100% of the angular momentum that the inner disc has to loose

to accrete at the observed rate. Thus, the fundamental physical implication of the

observed rotation is that jets are likely to be the major agent for extracting excess

angular momentum from the inner disc and that they do so throughout their lives.

However, care must be taken in translating the observed velocity shifts into jet

azimuthal velocities. For an annulus of radius r rotating at Vφ the measured velocity

shift is related to the azimuthal velocity by Vshift(r ) = 2Vφ(r ) sin(i) with r cylin-

drical radius in the jet and i inclination of the jet axis to the line of sight. A true

jet, observed at a given spectral and spatial resolution, will, however, suffer from

projection and convolution effects such as the simple formula above can no longer

be used. These effects are particularly critical in the measurements of jet azimuthal

velocities close to their driving source since both the currently best achievable spa-

tial (≃ 0.1′′) and spectral resolutions (≃ 30 km s−1) are comparable to jet widths and

expected transverse velocity gradients, respectively. These effects have been studied

in detail by Pesenti et al. [38] and applied to analysis of the transverse velocity shifts

measurements in the DG Tau microjet. The authors have shown that the velocity

shifts measured at a given transverse distance, d⊥, in the jet always underestimate

the true rotation velocities at d⊥ and that the discrepancy strongly increases towards

the jet axis. The observed velocity shifts will only be a reliable measure of Vφ on

transverse distances greater than ≃ 2 spatial beams.

This result arises from the combination of two effects. The first one, illustrated

in Fig. 16, comes from projection along the line of sight. At a given projected trans-

verse distance d⊥ from the jet axis, the emission integrated along the line of sight

will arise from concentric rings of true cylindrical radius R ≥ d⊥. The contribution

to the measured velocity shift at d⊥ = r from the ring of true radius R will be:

Vshift(d⊥ = r ) = 2×Vφ(R)×(r/R)×sin(i) < 2×Vφ(r )×sin(i) if as expected from

ejection models the rotation profile decreases with cylindrical radius r . In addition,

convolution by a spatial beam will tend to further decrease the measured Vshift, since

the contribution from rings located at true cylindrical radii > d⊥ will be increased.

Full analysis of biases introduced by observational parameters has been con-

ducted in [38] and is illustrated in Fig. 17. Synthetic predictions of measured trans-

◭

Fig. 15 Transverse velocity shifts in optical emission lines detected with HST/STIS across the

jets from DG Tau (top) and Th 28 (bottom), at about 50–60 AU from the source and 20–30 AU

from the outflow axis, in ‘parallel’ and ‘perpendicular’ slit modes, respectively. Applying gaussian

fitting and cross-correlation routines to the line profiles in locations opposed with respects to the

jet axis velocity shifts of 5–25 km s−1 could be detected. The values for the shifts obtained in this

way suggest toroidal speeds of 10–20 km/s at the jet boundaries
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Fig. 16 Illustration of projection effects on measured velocity shifts. The jet is assumed cylindrical

with its axis perpendicular to the line of sight. The contribution from annulus of true cylindrical

radius R to the measured velocity shift at a projected transverse distance d⊥ = r from the axis is

Vshift(r ) = 2 × Vφ(R) × sin(α + π/2) = 2 × Vφ(R) × (r/R)

verse velocity shifts have been computed for a warm self-similar disc wind solution,

varying the spatial resolution, the range of velocities examined and the excitation

conditions in the jet (the spectral resolution does not play a major role, provided it is

≥ 3000). Clearly, all these parameters have a strong influence on the detected veloc-

ity shifts. In particular, we note that with parameters comparable to the HST/STIS

observations of the DG Tau microjet by Bacciotti et al. [9] (spatial resolution 14 AU,

velocity shifts computed for intermediate velocity component |V | ≤ 100 km s−1),

the velocity shifts are predicted to increase with distance from the jet axis (which is

what is observed), while the underlying intrinsic rotation profile does the opposite

as expected. The measured velocity shifts in these conditions will give an accurate

measure of Vφ only on transverse distances > 30 AU, i.e. on the outer jet radius

streamline. The self-similar disc wind solution shown here does indeed reproduce

the velocity shifts observed with HST/STIS in the DG Tau microjet (see [38]). Full

detection of the underlying rotation profile will require spatial resolution ≤ 5 AU

(0.035′′ at the distance of Taurus). This will be a critical test of the different classes

of MHD launching models.

5.4 Excitation Conditions and Mass-Loss Rate Determinations

Projection and convolution effects may also have an effect on excitation condi-

tions and mass-loss rates derived from line ratios/intensities. The effect of strat-

ification of the emitting volume over integrated line ratios has been first pointed
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Fig. 17 Illustration of projection and convolution effects on measured transverse velocity shifts.

The dotted curve shows the true underlying rotation profile (2Vφcosi) of the warm self-similar disc

wind solution as a function of the cylindrical radius. Thick curves show the predicted velocity

shifts computed using the entire velocity profile as a function of the projected cylindrical radius

Rproj. Thin curves show predicted transverse velocity shifts for the low-velocity component only

(for |V | < 100 km s−1 ). Dashed curves show the effect of adopting an ionization law xe ∝ r0

where r0 is the streamline launching radius. Three spatial resolutions of 1 AU, 5 AU and 14 AU

are considered. All model predictions are computed at a projected altitude above the disc zproj =
100−150 AU. Figure adapted from [38]

out by Safier [44] and is illustrated in Fig. 18. In this study, the author considers

different power law distributions for the total element and electronic densities in

the emitting volume in both cylindrical and spherical geometries and computes

emergent line ratios. The comparison with line ratios expected from homogeneous

conditions shows that stratification can have a significant effect on the integrated

line ratios.

Complex non-linear effects may thus be introduced by stratification in the ele-

mentary emitting volume in previous derivations of excitation conditions (ne, Te, xe)

and mass-loss rates from integrated line ratios and emissivities. Of course these

effects will be more critical when strong gradients of excitation conditions occur

within the elementary emitting volume considered, for example, in studies of the

very inner regions of the jets at unsufficient angular and velocity

resolution.
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Fig. 18 Effect of stratification of the emitting volume over the [S II] line ratio L4076/L4068 versus

the [S II] line ratio L6731/L6717. The thick line shows the emergent line ratios for different cylin-

drical and spherical stratification laws of the total and electronic densities in the emitting volume.

The dashed line shows the values obtained in the case of a spatially homogeneous emitting volume

of varying electronic densities (ne in the range 10–1010 cm−3). Figure from [44]

5.5 Summary

Projection and convolution effects may introduce complex non-linear effects on the

derivation of physical quantities from observations. This is particularly critical in the

study of the inner regions of jets where strong spatial and kinematical gradients are

observed and where both the observational spatial and spectral resolutions are cur-

rently limited. A detailed comparison with models involving synthetic observational

predictions (taking into account plane of the sky projection effects and convolution

with the observational parameters) may often be required to derive meaningful con-

straints. Alternatively, high angular resolution studies at ≤ 15 AU spatial resolution,

where the transverse structure of the jet is well resolved, may offer the prospects for

tomographic reconstruction of the underlying 3D structure.
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